Part Number Hot Search : 
MTD5010W UF5400 D62081 47NF50KE 13000 BFAP80 LR024 AX5942
Product Description
Full Text Search
 

To Download ATHLON Datasheet File

  If you can't view the Datasheet, Please click here to try to view without PDF Reader .  
 
 


  Datasheet File OCR Text:
  preliminary information amd ATHLON mp processor model 6 opga data sheet for multiprocesso ultiprocessor platforms publication # 25480 rev: d issue date: june 2002 tm
preliminary information trademarks amd, the amd arrow logo, amd ATHLON, amd duron, and combinations thereof, amd-760, 3dnow!, and quantispeed are trademarks of advanced micro devices, inc. hypertransport is a trademark of the hypertransport technology consortium mmx is a trademark of intel corporation. other product names used in this publication are for identification purposes only and may be trademarks of their respective companies. ? 2001, 2002 advanced micro devices, inc. all rights reserved. the contents of this document are provided in connection with advanced micro devices, inc. (?amd?) products. amd makes no representations or war- ranties with respect to the accuracy or completeness of the contents of this publication and reserves the right to make changes to specifications and prod- uct descriptions at any time without notice. no license, whether express, implied, arising by estoppel or otherwise, to any intellectual property rights is granted by this publication. except as set forth in amd?s standard terms and conditions of sale, amd assumes no liability whatsoever, and disclaims any express or implied warranty, relating to its products including, but not limited to, the implied warranty of merchantability, fitness for a particular purpose, or infringement of any intellectual property right. amd?s products are not designed, intended, authorized or warranted for use as components in systems intended for surgical implant into the body, or in other applications intended to support or sustain life, or in any other applica- tion in which the failure of amd?s product could create a situation where per- sonal injury, death, or severe property or environmental damage may occur. amd reserves the right to discontinue or make changes to its products at any
table of contents iii 25480d?june 2002 amd ATHLON? mp processor model 6 opga data sheet for multiprocessor platforms preliminary information contents revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xi 1 overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.1 amd ATHLON? mp processor model 6 key microarchitecture summary . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 2 interface signals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 2.1 overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 2.2 signaling technology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 2.3 push-pull (pp) drivers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 2.4 amd ATHLON system bus signals . . . . . . . . . . . . . . . . . . . . . . . 6 3 logic symbol diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 4 power management . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 4.1 power management states . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 working state . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 halt state . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 stop grant states. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 probe state. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 4.2 connect and disconnect protocol . . . . . . . . . . . . . . . . . . . . . . 12 connect protocol . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 4.3 clock control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 5 cpuid support . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 6 thermal design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 7 electrical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 7.1 conventions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 7.2 interface signal groupings . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 7.3 voltage identification (vid[4:0]) . . . . . . . . . . . . . . . . . . . . . . 24 7.4 frequency identification (fid[3:0]) . . . . . . . . . . . . . . . . . . . . 25 7.5 vcca ac and dc characteristics . . . . . . . . . . . . . . . . . . . . . 25 7.6 decoupling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 7.7 vcc_core characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . 26 7.8 absolute ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 7.9 vcc_core voltage and current . . . . . . . . . . . . . . . . . . . . . . 29 7.10 sysclk and sysclk# ac and dc characteristics . . . . . . 30 7.11 amd ATHLON system bus ac and dc characteristics . . . . . 32 7.12 general ac and dc characteristics . . . . . . . . . . . . . . . . . . . . 34 7.13 open drain test circuit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 7.14 thermal diode characteristics . . . . . . . . . . . . . . . . . . . . . . . . 37 thermal diode electrical characteristics. . . . . . . . . . . . . . . . 37 thermal protection characterization . . . . . . . . . . . . . . . . . . . 38 7.15 apic pins ac and dc characteristics . . . . . . . . . . . . . . . . . . 39
iv table of contents amd ATHLON? mp processor model 6 opga data sheet for multiprocessor platforms 25480d?june 2002 preliminary information 8 signal and power-up requirements . . . . . . . . . . . . . . . . . . . . 41 8.1 power-up requirements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 signal sequence and timing description . . . . . . . . . . . . . . . . 41 clock multiplier selection (fid[3:0]) . . . . . . . . . . . . . . . . . . . 44 8.2 processor warm reset requirements . . . . . . . . . . . . . . . . . . 44 northbridge reset pins . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44 9 mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45 9.1 introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45 9.2 die loading . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45 9.3 opga package description . . . . . . . . . . . . . . . . . . . . . . . . . . . 46 10 pin descriptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49 10.1 pin diagram and pin name abbreviations . . . . . . . . . . . . . . 49 10.2 pin list . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58 10.3 detailed pin descriptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66 a20m# pin . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66 amd pin . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66 amd ATHLON system bus pins . . . . . . . . . . . . . . . . . . . . . . . . . 66 analog pin . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66 apic pins, picclk, picd[1:0]# . . . . . . . . . . . . . . . . . . . . . . . 66 clkfwdrst pin . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66 clkin, rstclk (sysclk) pins. . . . . . . . . . . . . . . . . . . . . . . 66 connect pin . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67 corefb and corefb# pins . . . . . . . . . . . . . . . . . . . . . . . . . . 67 cpu_presence# pin . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67 dbrdy and dbreq# pins . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67 ferr pin . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67 fid[3:0] pins . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68 flush# pin . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69 ignne# pin . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69 init# pin . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69 intr pin. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69 jtag pins . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69 k7clkout and k7clkout# pins. . . . . . . . . . . . . . . . . . . . . 69 key pins . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69 nc pins . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70 nmi pin . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70 pga orientation pins . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70 pll bypass and test pins . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70 pwrok pin . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70 saddin[1:0]# and saddout[1:0]# pins . . . . . . . . . . . . . . . . 70 scan pins . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70 scheck[7:0]# pins. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70 smi# pin . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71 stpclk# pin . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71 sysclk and sysclk#. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
table of contents v 25480d?june 2002 amd ATHLON? mp processor model 6 opga data sheet for multiprocessor platforms preliminary information thermda and thermdc pins . . . . . . . . . . . . . . . . . . . . . . . 71 vcca pin . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71 vid[4:0] pins . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71 vrefsys pin . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72 zn and zp pins . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72 11 ordering information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73 standard amd ATHLON mp processor model 6 products. . . . . . . . . . 73 appendix a conventions and abbreviations . . . . . . . . . . . . . . . . . . 75 signals and bits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75 data terminology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76 abbreviations and acronyms. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
vi table of contents amd ATHLON? mp processor model 6 opga data sheet for multiprocessor platforms 25480d?june 2002 preliminary information
list of figures vii 25480d?june 2002 amd ATHLON? mp processor model 6 opga data sheet for multiprocessor platforms preliminary information list of figures figure 1. logic symbol diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 figure 2. amd ATHLON? mp processor model 6 power management states . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 figure 3. amd ATHLON system bus disconnect sequence in the stop grant state . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 figure 4. exiting the stop grant state and bus connect sequence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 figure 5. northbridge connect state diagram . . . . . . . . . . . . . . . . . . . . . 16 figure 6. processor connect state diagram . . . . . . . . . . . . . . . . . . . . . . . 17 figure 7. vcc_core voltage waveform . . . . . . . . . . . . . . . . . . . . . . . . . 27 figure 8. sysclk and sysclk# differential clock signals . . . . . . . . . 30 figure 9. sysclk waveform . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 figure 10. general ate open-drain test circuit. . . . . . . . . . . . . . . . . . . . 36 figure 11. signal relationship requirements during power-up sequence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 figure 12. amd ATHLON mp processor model 6 opga package . . . . . . . . 47 figure 13. amd ATHLON mp processor model 6 pin diagram ? topside view . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50 figure 14. amd ATHLON mp processor model 6 pin diagram ? bottomside view . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51 figure 15. opn example for the amd ATHLON mp processor model 6, opga package . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
viii list of figures amd ATHLON? mp processor model 6 opga data sheet for multiprocessor platforms 25480d?june 2002 preliminary information
list of tables ix 25480d?june 2002 amd ATHLON? mp processor model 6 opga data sheet for multiprocessor platforms preliminary information list of tables table 1. maximum thermal power . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 table 2. interface signal groupings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 table 3. vid[4:0] dc characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 table 4. fid[3:0] dc characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 table 5. vcca ac and dc characteristics . . . . . . . . . . . . . . . . . . . . . . . 25 table 6. vcc_core ac and dc characteristics . . . . . . . . . . . . . . . . . . 26 table 7. absolute ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 table 8. vcc_core voltage and current. . . . . . . . . . . . . . . . . . . . . . . . 29 table 9. sysclk and sysclk# dc characteristics . . . . . . . . . . . . . . . 30 table 10. sysclk and sysclk# ac characteristics . . . . . . . . . . . . . . . 31 table 11. amd ATHLON? system bus dc characteristics . . . . . . . . . . . . 32 table 12. amd ATHLON system bus ac characteristics . . . . . . . . . . . . . . 33 table 13. general ac and dc characteristics . . . . . . . . . . . . . . . . . . . . . . 34 table 14. thermal diode electrical characteristics . . . . . . . . . . . . . . . . . 37 table 15. guidelines for platform thermal protection of the processor. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 table 16. apic pin ac and dc characteristics. . . . . . . . . . . . . . . . . . . . . 39 table 17. mechanical loading for the opga package . . . . . . . . . . . . . . . 45 table 18. dimensions for the amd ATHLON mp processor model 6 opga package. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46 table 19. pin name abbreviations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52 table 20. cross-reference by pin location . . . . . . . . . . . . . . . . . . . . . . . . 58 table 21. fid[3:0] clock multiplier encodings . . . . . . . . . . . . . . . . . . . . . 68 table 22. vid[4:0] code to voltage definition . . . . . . . . . . . . . . . . . . . . . 72 table 23. abbreviations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77 table 24. acronyms. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78
x list of tables amd ATHLON? mp processor model 6 opga data sheet for multiprocessor platforms 25480d?june 2002 preliminary information
revision history xi 25480d?june 2002 amd ATHLON? mp processor model 6 opga data sheet for multiprocessor platforms preliminary information revision history date rev description june 2002 d revision d of the amd ATHLON? mp processor model 6 opga data sheet for multiprocessor platforms contains current, frequency, power, and voltage information for model number 2100+ (1733 mhz) and changes to the following: in chapter 6, revised table 1, ?maximum thermal power,? on page 21. in chapter 7, revised table 8, ?vcc_core voltage and current,? on page 29 . in chapter 11, revised figure 15, ?opn ex ample for the amd ATHLON? mp processor model 6, opga package? on page 73. march 2002 c revision c of the amd ATHLON? mp processor model 6 opga data sheet for multiprocessor platforms contains current, frequency, power, and voltage information for model number 2000+ (1667 mhz) and changes to the following: in chapter 6, revised table 1, ?maximum thermal power,? on page 21. in chapter 7, revised table 8, ?vcc_core voltage and current,? on page 29 and table 10, ?sysclk and sysclk# ac characteristics,? on page 31. in chapter 10, updated table and notes for table 21, ?fid[3:0] clock multiplier encodings,? on page 68. in chapter 11, revised figure 15, ?opn ex ample for the amd ATHLON? mp processor model 6, opga package? on page 73. december 2001 b revision b of the amd ATHLON? mp processor model 6 data sheet for multiprocessor platforms contains current, frequency, power, and voltage information for model number 1900+ (1600 mhz) and changes to the following: in chapter 6, revised table 1, ?maximum thermal power,? on page 21. in chapter 7, revised table 6, ?vcc_core ac and dc characteristics,? on page 26, table 8, ?vcc_core voltage and current,? on page 29, revised table 13, ?general ac and dc characteristics,? on page 34, added new section, ?open drain test circuit? on page 36, added figure 10, ?general ate open-drain test circuit? on page 36, added new section, ?thermal protection characterization? on p age 38, and added table 15, ?guidelines for platform thermal protection of the processor,? on page 39. in chapter 11, revised figure 15, ?opn ex ample for the amd ATHLON? mp processor model 6, opga package? on page 73. october 2001 a initial release of the amd ATHLON? mp processor model 6 opga data sheet for multiprocessor platforms , order# 25480.
xii revision history amd ATHLON? mp processor model 6 opga data sheet for multiprocessor platforms 25480d?june 2002 preliminary information
chapter 1 overview 1 25480d?june 2002 amd ATHLON? mp processor model 6 opga data sheet for multiprocessor platforms preliminary information 1 overview the amd ATHLON? mp processo r model 6 powers the next generation in computing platf orms, delivering compelling performance for cutt ing-edge applications a nd an unprecedented computing experience. the amd ATHLON? mp processor mo del 6 continues to deliver breakthrough performance in the multiprocessing server and workstation markets. this processor is designed to meet the reliability and computation-intensive requirements of cutting-edge software applications required by workstations and servers. delivered in an opga package, the amd ATHLON mp processor model 6 delivers the integer, floating-point, and 3d multimedia performance for enterp rise applications running on x86 system platforms. the amd ATHLON mp processor model 6 offers compelling performance for pro ductivity software, including workstation-class digital content creation (dcc), electronic design automation (eda), and computer-aided design (cad), as well as infrastructure and collaborative server applications. it also offers the scalability and reliability that it managers and business users require for mission-critical computing. the amd ATHLON mp processor model 6 features the seventh-generation microarchitec ture, including a high-speed execution core that includes mult iple x86 instruction decoders; a dual-ported, 128-kbyte, split level-one (l1) cache; a 256-kbyte on-chip l2 cache; three indepe ndent integer pipelines, three address calculation pipelines; and a superscalar, fully pipelined, out-of-order, three-way floating-point engine. the integrated l2 cache supports the growing processor and system bandwidth requirements of emerging software, graphics, i/o, and memory technologies. the processor also features the advanced modified owner exclusive shared invalid (moesi) cache coherency protocol to ensure efficient cache integrity in a multiprocessing environment. the floating-point engine is capable of delivering excellent performance on the numerically complex applications typical of servers and workstations.
2 overview chapter 1 amd ATHLON? mp processor model 6 opga data sheet for multiprocessor platforms 25480d?june 2002 preliminary information the key features of the amd ATHLON mp processor model 6 include quan tispeed? architecture, a high-performance full- speed cache, a 266-mhz, 2.1-giga byte per second system bus, 3dnow!? professional technolo gy, and fully featured logic implementation for the multiprocessor configuration. the amd ATHLON system bus combin es the latest technological advances, such as point-to-point topology, source-synchronous packet-based transfers, and low-voltage signaling. the point-to- point front-side bus architecture provides a more efficient, higher bandwidth bus that allows each processor, in a multi- processor configuration, to comm unicate to the system chipset through two, full-speed, independent buses rather than through a common, shared bus. combin ed with the amd-760? mpx chipset, the processor and the system bus interface with double-data rate (ddr) memo ry subsystems, providing scalable headroom for bandwidt h-hungry applications such as large databases, cad/cam mode ling, and simulation engines. the front-side bus of the amd ATHLON mp processor model 6 also provides multiple-bit error detection and single-bit error correction with 8-bit error corr ection code (ecc). the front- side bus with 8-bit ecc delivers the high reliability and consistency demanded by miss ion-critical applications. the amd ATHLON mp processor model 6 is binary-compatible with existing x86 software and backwards compatible with applications optimized for mmx ? and 3dnow! technologies. using a data format and single-instruction multiple-data (simd) operations based on the mmx instruction model, the amd ATHLON mp processor model 6 can produce as many as four, 32-bit, single-precision floating-point results per clock cycle. the 3dnow! professional technology implemented in the amd ATHLON mp processor model 6 includes new integer multimedia instructions and software-directed data movement instructions for optimizing such applications as digital content creation and streaming video for the internet, as well as new instructions for digital signal processing (dsp)/communications applications.
chapter 1 overview 3 25480d?june 2002 amd ATHLON? mp processor model 6 opga data sheet for multiprocessor platforms preliminary information 1.1 amd ATHLON? mp processor model 6 key microarchitecture summary the following features summarize the amd ATHLON mp processor model 6 microarchitecture: quantispeed? architecture: ? an advanced nine-issue, supe rpipelined, superscalar x86 processor microarchitectur e designed for increased instructions per clock cycle (ipc) and high clock frequencies  fully pipelined floating-point unit that executes all x87 (floating-point), mmx and 3dnow! professional instructions  hardware data pre-fetch that increases and optimizes performance on high-end software applications that utilize high-bandwidth system capability  advanced two-level translation look-aside buffer (tlb) structures for enhanced da ta and instruction address translation. the amd ATHLON mp processor with quantispeed architecture incorporates three tlb optimizations: the l1 dtlb increases from 32 to 40 entries, the l2 itlb and l2 dtlb both use exclusive architecture, and the tlb entries can be speculatively loaded. 3dnow! professional technology with new instructions to enable improved integer-math calculations for speech or video encoding and improved data movement for internet plug-ins and other st reaming applications a 266-mhz amd ATHLON system bus enabling leading-edge system bandwidth for data move ment-intensive applications point-to-point front-side bus architecture allowing each processor in a multi-processo r configuration to communicate to the system chipsets throug h two, full speed, independent buses high-performance cache architecture featuring an integrated 128-kbyte l1 cache and a 16-way, 256-kbyte on- chip l2 cache for a total of 384 kbytes of on-chip cache multiple-bit error detection and single-bit error correction with 8-bit error correction code (ecc) full featured mp local apic implementation
4 overview chapter 1 amd ATHLON? mp processor model 6 opga data sheet for multiprocessor platforms 25480d?june 2002 preliminary information advanced moesi cache coherency protocol to ensure efficient cache integrity in a multiprocessing environment the amd ATHLON mp processor model 6 delivers excellent system performance in a cost-e ffective, industry-standard form factor. the amd ATHLON mp processor model 6 is compatible with motherboards based on socket a.
chapter 2 interface signals 5 25480d?june 2002 amd ATHLON? mp processor model 6 opga data sheet for multiprocessor platforms preliminary information 2 interface signals 2.1 overview the amd ATHLON? system bus architecture is designed to deliver superior data movement bandwidth for next-generation x86 platforms as well as the high-performance required by enterprise-class application software. the system bus architecture consists of th ree high-speed channels (a unidirectional processor reque st channel, a unidirectional probe channel, and a 72-bit bidirectional data channel, including 8-bit error correction code [ecc] protection), source-synchronous clocking, a nd a packet-based protocol. in addition, the system bus supports several control, clock, and legacy signals. the interface signals use an impedance controlled push-pull, low-voltage, swing-signaling technology contained within the socket a socket. for more information, see ?amd ATHLON? system bus signals? on page 6, ?pin descriptions? on page 49, and the amd ATHLON? system bus specification , order# 21902. 2.2 signaling technology the amd ATHLON system bus uses a low-voltage, swing-signaling technology, that has been enhanced to provide larger noise margins, reduced ringing, and variable voltage levels. the signals are push-pull and impe dance compensated. the signal inputs use differential receivers that require a reference voltage (v ref ). the reference signal is used by the receivers to determine if a signal is asserted or deasserted by the source. termination resistors are not needed because the driver is impedance-matched to the motherboard and a high impedance reflection is used at the receiv er to bring the signal past the input threshold. for more information about pins and signals, see chapter 10, ?pin descriptions ? on page 49.
6 interface signals chapter 2 amd ATHLON? mp processor model 6 opga data sheet for multiprocessor platforms 25480d?june 2002 preliminary information 2.3 push-pull (pp) drivers the amd ATHLON mp processor model 6 supports push-pull (pp) drivers. the system logic configures the processor with the configuration para meter called syspushpull (1=pp). the impedance of the pp drivers is set to match the impedance of the motherboard by two external resistors connected to the zn and zp pins. see ?zn and zp pins? on page 72 for more information. 2.4 amd ATHLON? system bus signals the amd ATHLON system bus is a clock-forwarded, point-to- point interface with the following three point-to-point channels: a 13-bit unidirectional out put address/command channel a 13-bit unidirectional i nput address/command channel a 72-bit bidirectio nal data channel for more information, see chapter 7, ?electrical data? on page 23 and the amd ATHLON? system bus specification , order# 21902.
chapter 3 logic symbol diagram 7 25480d?june 2002 amd ATHLON? mp processor model 6 opga data sheet for multiprocessor platforms preliminary information 3 logic symbol diagram figure 1 is the logic symbol di agram of the processor. this diagram shows the logical grouping of the input and output signals. figure 1. logic symbol diagram sdata[63:0]# sdatainclk[3:0]# sdataoutclk[3:0]# scheck[7:0]# data saddin[14:2]# saddinclk# probe/syscmd saddout[14:2]# saddoutclk# vid[4:0] fid[3:0] a20m# clkfwdrst connect corefb corefb# ferr ignne# init# intr nmi procrdy pwrok reset# sfillvalid# smi# stpclk# sysclk# sysclk clock voltage control frequency control legacy request amd ATHLON? mp processor model 6 sdatainvalid# sdataoutvalid# power and initialization management thermal diode thermda thermdc flush# picclk picd[1:0] apic
8 logic symbol diagram chapter 3 amd ATHLON? mp processor model 6 opga data sheet for multiprocessor platforms 25480d?june 2002 preliminary information
chapter 4 power management 9 25480d?june 2002 amd ATHLON? mp processor model 6 opga data sheet for multiprocessor platforms preliminary information 4 power management this chapter describes the po wer management control system of the amd ATHLON? mp proc essor model 6. the power management features of the pr ocessor are compliant with the acpi 1.0b and acpi 2.0 specifications. 4.1 power management states the amd ATHLON mp processor model 6 supports low-power halt and stop grant states. thes e states are used by advanced configuration and power interface (acpi) enabled operating systems for processor power management. figure 2 shows the power mana gement states of the processor. the figure includes the acpi ?cx? naming convention for these states. figure 2. amd ATHLON? mp processor model 6 power management states c1 halt c0 working 4 execute hlt smi#, intr, nmi, init#, reset# incoming probe p r o b e s e r v i c e d stpclk# asserted s t p c l k # a s s e r t e d 2 s t p c l k # d e a s s e r t e d 3 c2 stop grant cache snoopable incoming probe probe serviced probe state 1 stpclk# deasserted (read plvl2 register or throttling) s1 stop grant cache not snoopable sleep s t p c l k # a s s e r t e d s t p c l k # d e a s s e r t e d note: the amd ATHLON tm system bus is connected during the following states: 1) the probe state 2) during transitions between the halt state and the c2 stop grant state 3) during transitions between the c2 stop grant state and the halt state 4) c0 working state software transitions hardware transitions legend
10 power management chapter 4 amd ATHLON? mp processor model 6 opga data sheet for multiprocessor platforms 25480d?june 2002 preliminary information the following sections provide an overview of the power management states. for more details, refer to the amd ATHLON? system bus specification, order# 21902 . note: in all power management sta tes that the processor is powered, the system must not stop the system clock (sysclk/sysclk#) to the processor. working state the working state is the state in which the processor is executing instructions. halt state when the processor executes the hlt instruction, the processor enters the halt state and issues a halt special cycle to the amd ATHLON system bus. the processor only enters the low power state dictated by the clk_ctl msr if the system controller (northbridge) disconnects the amd ATHLON system bus in response to the halt special cycle. if stpclk# is asserted, the proc essor will exit the halt state and enter the stop grant state. the processor will initiate a system bus connect, if it is disconnected, then issue a stop grant special cycle. when stpclk# is deasserted, the processor will exit the stop grant state and re-enter the halt state. the processor will issue a halt special cycle when re-entering the halt state. the halt state is exited when the processor detects the assertion of init#, reset#, smi#, or an interrupt via the intr or nmi pins, or via a local apic interrupt message. when the halt state is exited, the proce ssor will initiate an amd ATHLON system bus connect if it is disconnected. stop grant states the processor enters the stop grant state upon recognition of assertion of stpclk# input. after entering the stop grant state, the processor issues a stop grant special bus cycle on the amd ATHLON system bus. the processor is not in a low-power state at this time, because the amd ATHLON system bus is still connected. after the northbridg e disconnects the amd ATHLON system bus in response to the st op grant special bus cycle, the processor enters a low-power state dictated by the clk_ctl msr. if the northbridge needs to probe the processor during the stop grant state while the system bus is disconnected, it must first connect the system bus. connecting the system bus places the processor into the hi gher power probe state. after
chapter 4 power management 11 25480d?june 2002 amd ATHLON? mp processor model 6 opga data sheet for multiprocessor platforms preliminary information the northbridge has completed all probes of the processor, the northbridge must disconnect the amd ATHLON system bus again so that the processor can return to the low-power state. during the stop grant states , the processor latches init#, intr, nmi, smi#, or a local apic interrupt message, if they are asserted. the stop grant state is exited upon the deassertion of stpclk# or the assertion of reset#. when stpclk# is deasserted, the processor in itiates a connect of the amd ATHLON system bus if it is disconnected. after the processor enters the working stat e, any pending interrupts are recognized and serviced and th e processor resumes execution at the instruction boundary where stpclk# was initially recognized. if reset# is samp led asserted during the stop grant state, the processor exits the stop grant state and the reset process begins. there are two mechanisms for asserting stpclk#?hardware and software. the southbridge can force stpclk# assertion for throttling to protect the processor from exceeding its maximum case temperature. this is accomplished by asserting the therm# input to the southbridge. throttling asserts stpclk# for a percentage of a predefined throttling period: stpclk# is repetitively asserted and deasserted until therm# is deasserted. software can force the processor into the stop grant state by accessing acpi-defined registers typically located in the southbridge. the operating system places th e processor into the c2 stop grant state by reading the p_lvl2 register in the southbridge. if an acpi thermal zone is defined for the processor, the operating system can initiate throttling with stpclk# using the acpi defined p_cnt regist er in the southbridge. the northbridge connects the amd a thlon system bus, and the processor enters the probe state to service cache snoops during stop grant for c2 or throttling. in c2, probes are allowed, as shown in figure 2 on page 9
12 power management chapter 4 amd ATHLON? mp processor model 6 opga data sheet for multiprocessor platforms 25480d?june 2002 preliminary information the stop grant state is also entered for the s1, powered on suspend, system sleep state ba sed on a write to the slp_typ and slp_en fields in the ac pi-defined power management 1 control register in the southbrid ge. during the s1 sleep state, system software ensures no bus master or probe activity occurs. the southbridge deasserts stpc lk# and brings the processor out of the s1 stop grant state when any enabled resume event occurs. probe state the probe state is entered when the northbridge connects the amd ATHLON system bus to probe the processor (for example, to snoop the processor caches) when the processor is in the halt or stop grant state. when in the probe state, the processor responds to a probe cycle in th e same manner as when it is in the working state. when the probe has been serviced, the processor returns to the same state as when it entered the probe state (halt or stop grant state). when probe activity is completed the processor only returns to a low-power state after the northbridge disconnects th e amd ATHLON system bus again. 4.2 connect and disconnect protocol significant power savings of th e processor only occur if the processor is disconnected fr om the system bus by the northbridge while in the halt or stop grant state. the northbridge can optionally initia te a bus disconnect upon the receipt of a halt or stop grant special cycle. the option of disconnecting is contro lled by an enable bit in the northbridge. if the northbridge requires the processor to service a probe after the system bus has been disconnect ed, it must first initiate a system bus connect. connect protocol in addition to the legacy stpclk# signal and the halt and stop grant special cycles, the amd ATHLON system bus connect protocol includes the connect, procrdy, and clkfwdrst signals and a connect special cycle. amd ATHLON system bus disco nnects are initiated by the northbridge in response to the receipt of a halt or stop grant special cycle. reconnect is initiated by the processor in response to an interrupt for halt, stpclk# deassertion, or by the northbridge to service a probe.
chapter 4 power management 13 25480d?june 2002 amd ATHLON? mp processor model 6 opga data sheet for multiprocessor platforms preliminary information the northbridge contains bios programmable registers to enable the system bus disconnect in response to halt and stop grant special cycles. when the northbridge receives the halt or stop grant special cycle from the processor and, if there are no outstanding probes or data movements, the northbridge deasserts connect a minimum of eight sysclk periods after the last command sent to the pr ocessor. the processor detects the deassertion of connect on a rising edge of sysclk and deasserts procrdy to the northbridge. in return, the northbridge asserts clkfw drst in anticipation of reestablishing a connectio n at some later point. note: the northbridge must disconnect the processor from the amd ATHLON system bus before issuing the stop grant special cycle to the pci bus, or passing the stop grant special cycle to the southbridge for systems that connect to the southbridge with hypertransport? technology. this note applies to current chipset implementation? alternate chipset implementations that do not require this are possible. note: in response to halt special cycles, the northbridge passes the halt special cycle to the pci bus or southbridge immediately. the processor can receive an interrupt after it sends a halt special cycle, or stpclk# deassertion after it sends a stop grant special cycle to the northbridge but before the disconnect actually occurs. in th is case, the processor sends the connect special cycle to the northbridge, rather than continuing with the disconnect sequence. in response to the connect special cycle, the nort hbridge cancels the disconnect request. the system is required to assert the connect signal before returning the c-bit for the connect special cycle (assuming connect has been deasserted). for more information, see the amd ATHLON? system bus specification , order# 21902 for the definition of the c-bit and the connect special cycle.
14 power management chapter 4 amd ATHLON? mp processor model 6 opga data sheet for multiprocessor platforms 25480d?june 2002 preliminary information figure 3 shows stpclk# assertion resulting in the processor in the stop grant state and the amd ATHLON system bus disconnected. figure 3. amd ATHLON? system bus disconnect sequence in the stop grant state an example of the amd ATHLON system bus disconnect sequence is as follows: 1. the peripheral controller (southbridge) asserts stpclk# to place the processor in the stop grant state. 2. when the processor recognizes stpclk# asserted, it enters the stop grant state and then issues a stop grant special cycle. 3. when the special cycle is received by the northbridge, it deasserts connect, assuming no probes are pending, initiating a bus disco nnect to the processor. 4. the processor responds to the northbridge by deasserting procrdy. 5. the northbridge asserts clkfwdrst to complete the bus disconnect sequence. 6. after the processor is disc onnected from the bus, the processor enters a low-power state. the northbridge passes the stop grant special cycle along to the southbridge. stop grant stop grant stpclk# connect procrdy clkfwdrst pci bus amd ATHLON? system bus
chapter 4 power management 15 25480d?june 2002 amd ATHLON? mp processor model 6 opga data sheet for multiprocessor platforms preliminary information figure 4 shows the signal sequence of events that takes the processor out of the stop grant state, connects the processor to the amd ATHLON system bus, and puts the processor into the working state. figure 4. exiting the stop grant state and bus connect sequence the following sequence of events removes the processor from the stop grant state and conne cts it to the system bus: 1. the southbridge deasserts stpclk#, informing the processor of a wake event. 2. when the processor recognizes stpclk# deassertion, it exits the low-power state and asserts procrdy, notifying the northbridge to connect to the bus. 3. the northbridge asserts connect. 4. the northbridge deasserts cl kfwdrst, synchronizing the forwarded clocks betwee n the processor and the northbridge. 5. the processor issues a connect special cycle on the system bus and resumes operating sy stem and application code execution. st pclk # procrdy connect clkfwdrst
16 power management chapter 4 amd ATHLON? mp processor model 6 opga data sheet for multiprocessor platforms 25480d?june 2002 preliminary information figure 5 and figure 6 on page 17 describe the northbridge and processor connect state diagrams, respectively. figure 5. northbridge connect state diagram condition 1 a disconnect is requested and probes are still pending. 2 a disconnect is requested and no probes are pending. 3 a connect special cycle from the processor. 4 no probes are pending. 5 procrdy is deasserted. 6 a probe needs service. 7 procrdy is asserted. 8 three sysclk periods after clkfwdrst is deasserted. although reconnected to the system interface, the northbridge must not issue any non-nop sysdc commands for a minimum of four sysclk periods after deasserting clkfwdrst . action a deassert connect eight sysclk periods after last sysdc sent. bassert clkfwdrst. c assert connect. d deassert clkfwdrst. disconnect pending connect disconnect requested reconnect pending probe pending 2 disconnect probe pending 1 1 3 2/a 4/a 5/b 3/c 7/d,c 8 6/c 7/d 8
chapter 4 power management 17 25480d?june 2002 amd ATHLON? mp processor model 6 opga data sheet for multiprocessor platforms preliminary information figure 6. processor connect state diagram condition 1 connect is deasserted by the northbridge (for a previously sent halt or stop grant special cycle). 2 processor receives a wake- up event and must cancel the disconnect request. 3 deassert procrdy and slow down internal clocks. 4 processor wake-up event or connect asserted by northbridge. 5 clkfwdrst is deasserted by the northbridge. 6 forward clocks start three sysclk periods after clkfwdrst is deasserted. action a clkfwdrst is asserted by the northbridge. b issue a connect special cycle.* c return internal clocks to full speed and assert procrdy. note: * the connect special cycle is only issued after a processor wake-up event (interrupt or stpclk# deassertion) occurs. if the amd ATHLON? system bus is connected so the northbridge can probe the processor, a connect special cycle is not issued at that time (it is only issued after a subsequent processor wake-up event). connect disconnect pending disconnect connect pending 1 connect pending 2 1 3/a 4/c 5 6/b 2/b
18 power management chapter 4 amd ATHLON? mp processor model 6 opga data sheet for multiprocessor platforms 25480d?june 2002 preliminary information 4.3 clock control the processor implements a clock control (clk_ctl) msr (address c001_001bh) that dete rmines the internal clock divisor when the amd ATHLON system bus is disconnected. refer to the amd ATHLON? and amd duron? processors bios, software, and debug developers guide , order# 21656, for more details on the clk_ctl register.
chapter 5 cpuid support 19 25480d?june 2002 amd ATHLON? mp processor model 6 opga data sheet for multiprocessor platforms preliminary information 5 cpuid support amd ATHLON? and duron? proces sor recognition application note addendum version and feature set recognition can be performed through the use of the cpuid instruction, that provides complete informatio n about the processor?vendor, type, name, etc., and its capabilities. software can make use of this information to accurately tune the system for maximum performance and be nefit to users. for information on the use of the cpuid instruction see the following documents: amd processor recognition application note , order# 20734 amd ATHLON? and duron? processor recognition application note addendum , order# 21922 amd ATHLON? and amd duron? processors bios, software, and debug developers guide, order# 21656
20 cpuid support chapter 5 amd ATHLON? mp processor model 6 opga data sheet for multiprocessor platforms 25480d?june 2002 preliminary information
chapter 6 thermal design 21 25480d?june 2002 amd ATHLON? mp processor model 6 opga data sheet for multiprocessor platforms preliminary information 6 thermal design the amd ATHLON? mp processor model 6 provides a diode that can be used in conjunction with an external temperature sensor to determine the die temperature of the processor. the diode anode (thermda) an d cathode (thermdc) are available as pins on the processor. refer to ?thermda and thermdc pins? on page 71 for more details. for information about thermal design for the amd ATHLON mp processor model 6, including layo ut and airflow considerations, see the amd processor thermal, mechanical, and chassis cooling design guide , order# 23794, and the cooling guidelines on http://www.amd.com . table 1 shows the thermal design power specifications. table 1. maximum thermal power model number frequency (mhz) nominal voltage maximum thermal power * typical thermal power maximum die temperature 1500+ 1333 1.75 v 60.0 w 53.8 w 95 c 1600+ 1400 62.8 w 56.3 w 1800+ 1533 66.0 w 58.9 w 1900+ 1600 2000+ 1667 2100+ 1733 notes: * the maximum thermal power represents the maximum sustained power dissipated while executing publicly available software or instruction sequences under normal system operation at nominal vcc_core. thermal solutions must monitor the processor tem- perature to prevent the processor from exceeding its maximum die temperature.
22 thermal design chapter 6 amd ATHLON? mp processor model 6 opga data sheet for multiprocessor platforms 25480d?june 2002 preliminary information
chapter 7 electrical data 23 25480d?june 2002 amd ATHLON? mp processor model 6 opga data sheet for multiprocessor platforms preliminary information 7 electrical data 7.1 conventions the conventions used in this chapter are as follows: current specified as being sourced by the processor is negative . current specified as being sunk by the processor is positive . 7.2 interface signal groupings the electrical data in this chap ter is presented separately for each signal group. table 2 defines each group and the signals contained in each group. table 2. interface signal groupings signal group signals notes power vid[4:0], vcca, vcc_core, corefb, corefb# see ?absolute ratings? on page 28, ?voltage identification (vid[4:0])? on page 24, ?vid[4:0] pins? on page 71, ?vcca ac and dc characteristics? on page 25, ?vcca pin? on page 71, and ?corefb and corefb# pins? on page 67. frequency fid[3:0] see ?frequency identification (fid[3:0])? on page 25 and ?fid[3:0] pins? on page 68. system clocks sysclk, sysclk# (tied to clkin/clkin# and rstclk/rstclk#), pllbypassclk#, pllbypassclk see table 9, ?sysclk and sysclk# dc characteristics,? on page 30, table 10, ?sysclk and sysclk# ac characteristics,? on page 31, table , ?sysclk and sysclk#,? on page 71, and table , ?pll bypass and test pins,? on page 70. amd ATHLON? system bus saddin[14:2]#, saddout[14:2]#, saddinclk#, saddoutclk#, sfillval#, sdatainval#, sdataoutval#, sdata[63:0]#, sdatainclk[3:0]#, sdataoutclk[3:0]#, scheck[7:0]#, clkfwdrst, procrdy, connect see ?amd ATHLON? system bus ac and dc characteristics? on page 32, and ?clkfwdrst pin? on page 66.
24 electrical data chapter 7 amd ATHLON? mp processor model 6 opga data sheet for multiprocessor platforms 25480d?june 2002 preliminary information 7.3 voltage identification (vid[4:0]) table 3 shows the vid[4:0] dc characteristics. for more infor- mation on vid[4:0] dc characteristics, see ?vid[4:0] pins? on page 71. southbridge reset#, intr, nmi, smi#, init#, a20m#, ferr, ignne#, stpclk#, flush# see ?general ac and dc characteristics? on page 34, ?intr pin? on page 69, ?nmi pin? on page 70, ?smi# pin? on page 71, ?init# pin? on page 69, ?a20m# pin? on page 66, ?ferr pin? on page 67, ?ignne# pin? on page 69, ?stpclk# pin? on page 71, and ?flush# pin? on page 69. jtag tms, tck, trst#, tdi, tdo see ?general ac and dc characteristics? on page 34. test pllbypass#, plltest#, pllmon1, pllmon2, scanclk1, scanclk2, scanshiften, scaninteval, analog see ?general ac and dc characteristics? on page 34, ?pll bypass and test pins? on page 70, ?scan pins? on page 70, ?analog pin? on page 66. miscellaneous dbreq#, dbrdy, pwrok see ?general ac and dc characteristics? on page 34, ?dbrdy and dbreq# pins? on page 67, ?pwrok pin? on page 70. apic picd[1:0]#, picclk see ?apic pins ac and dc characteristics? on page 39, and ?apic pins, picclk, picd[1:0]#? on page 66. thermal thermda, thermdc table 14, ?thermal diode electrical characteristics,? on page 37, and ?thermda and thermdc pins? on page 71. table 2. interface signal groupings (continued) signal group signals notes table 3. vid[4:0] dc characteristics parameter description min max i ol output current low 16 ma v oh output high voltage ? 2.625 v* note: * the vid pins must not be pulled above thi s voltage by an external pullup resistor.
chapter 7 electrical data 25 25480d?june 2002 amd ATHLON? mp processor model 6 opga data sheet for multiprocessor platforms preliminary information 7.4 frequency identification (fid[3:0]) table 4 shows the fid[3:0] dc characteristics. for more information, see ?fid[3:0] pins? on page 68. 7.5 vcca ac and dc characteristics table 5 shows the ac and dc characteristics for vcca. for more information, see ?vcca pin? on page 71. 7.6 decoupling see the amd ATHLON? processor-ba sed motherboard design guide , order# 24363, or contact your local amd office for information about the decoupling required on the motherboard for use with the amd ATHLON? mp processor model 6. table 4. fid[3:0] dc characteristics parameter description min max i ol output current low 16 ma v oh output high voltage ? 2.625 v * note: * the fid pins must not be pulled above this voltage by an external pullup resistor. table 5. vcca ac and dc characteristics symbol parameter min nominal max units notes v vcca vcca pin voltage 2.25 2.5 2.75 v 1 i vcca vcca pin current 0 50 ma/ghz 2 notes: 1. minimum and maximum voltages are absolute. no transients below minimum nor above maximum voltages are permitted. 2. measured at 2.5 v.
26 electrical data chapter 7 amd ATHLON? mp processor model 6 opga data sheet for multiprocessor platforms 25480d?june 2002 preliminary information 7.7 vcc_core characteristics the amd ATHLON mp processor model 6 is designed to provide functional operation if the voltage and temperature parameters are within the limits defined in table 6, which also shows the ac and dc characteristics fo r vcc_core. see figure 7 on page 27 for a graphical representation of the vcc_core waveform. table 6. vcc_core ac and dc characteristics symbol parameter limit in working state units v cc_core_dc_max maximum static voltage above v cc_core_nom * 50 mv v cc_core_dc_min maximum static voltage below v cc_core_nom * ?50 mv v cc_core_ac_max maximum excursion above v cc_core_nom * 150 mv v cc_core_ac_min maximum excursion below v cc_core_nom * ?100 mv t max_ac maximum excursion time for ac transients 10 s t min_ac negative excursion time for ac transients 5 s note: * all voltage measurements are taken differentially at the corefb/corefb# pins.
chapter 7 electrical data 27 25480d?june 2002 amd ATHLON? mp processor model 6 opga data sheet for multiprocessor platforms preliminary information figure 7 shows the processor core voltage (vcc_core) waveform response to perturbation. the t min_ac (negative ac transient excursion time) and t max_ac (positive ac transient excursion time) represent the maximum allowable time below or above the dc tolerance thresholds. figure 7. vcc_core voltage waveform t min_ac v cc_core_max_ac t max_ac v cc_core_max_dc v cc_core_nom v cc_core_min_dc v cc_core_min_ac i core_min i core_max di /dt
28 electrical data chapter 7 amd ATHLON? mp processor model 6 opga data sheet for multiprocessor platforms 25480d?june 2002 preliminary information 7.8 absolute ratings the amd ATHLON mp processor model 6 should not be subjected to conditions exceeding the absolute ratings, as such conditions can adversely affect long-term reliability or result in functional damage. table 7 lists the maximum absolute ratings of operation for the amd ATHLON mp processor table 7. absolute ratings parameter description min max vcc_core amd ATHLON? mp processor model 6 core supply ?0.5 v vcc_core max + 0.5 v vcca amd ATHLON mp processor model 6 pll supply ?0.5 v vcca max + 0.5 v v pin voltage on any signal pin ?0.5 v vcc_core max + 0.5 v t storage storage temperature of processor ?40oc 100oc
chapter 7 electrical data 29 25480d?june 2002 amd ATHLON? mp processor model 6 opga data sheet for multiprocessor platforms preliminary information 7.9 vcc_core voltage and current table 8 shows the voltage and current for the amd ATHLON mp processor model 6 during norm al and reduced power states. table 8. vcc_core voltage and current model number frequency (mhz) nominal voltage die temperature i cc (processor current) maximum typical 1500+ 1333 1.75 v 95 c 34.3 a 30.8 a 1600+ 1400 35.9 a 32.2 a 1800+ 1533 37.7 a 33.7 a 1900+ 1600 2000+ 1667 2100+ 1733 stop grant s1 or sleep state 1, 2, 3, 4, 5 1.30 v 50 c 2.69 a 0.61 a notes: 1. the cooling fan can be turned off during the sleep state, but cus tomers should test their systems in sleep state to ensure th at the system, when using typical parts, has adequate cooling (without the fan during sleep state) to meet the temperature specificati on of the product. 2. see figure 2, "amd ATHLON? mp processor model 6 power manageme nt states" on page 9. 3. the maximum stop grant currents are absolute worst case curre nts for parts that may yield from the worst case corner of the process and are not representative of the typical stop grant curren t that is currently about one-third of the maximum specified current. 4. these currents occur when the amd ATHLON system bus is disconnected and a low power ratio of 1/64 is applied to the core clock grid of the processor as dictated by a value of 6003 _d22fh programmed into the clock control (clk_ctl) msr. 5. the stop grant current consumption is characterized and not tested.
30 electrical data chapter 7 amd ATHLON? mp processor model 6 opga data sheet for multiprocessor platforms 25480d?june 2002 preliminary information 7.10 sysclk and sysclk# ac and dc characteristics table 9 shows the dc characteristics of the sysclk and sysclk# differential clocks. the sysclk signal represents clkin and rstclk tied toget her while the sysclk# signal represents clkin# and rstclk# tied together. figure 8 shows the dc charac teristics of the sysclk and sysclk# signals. figure 8. sysclk and sysclk# differential clock signals table 9. sysclk and sysclk# dc characteristics symbol description min max units v threshold-dc crossing before transition is detected (dc) 400 mv v threshold-ac crossing before transition is detected (ac) 450 mv i leak_p leakage current through p-channel pullup to vcc_core ?1 ma i leak_n leakage current through n-channel pulldown to vss (ground) 1 ma v cross differential signal crossover vcc_core/2100 mv c pin capacitance* 4 12* pf note: * the following processor inputs have twice the listed capa citance because they connect to two input pads?sysclk and sysclk#. sysclk connects to clkin/rstclk. sysclk# connects to clkin#/rstclk#. v cross v threshold-dc = 400mv v threshold-ac = 450mv
chapter 7 electrical data 31 25480d?june 2002 amd ATHLON? mp processor model 6 opga data sheet for multiprocessor platforms preliminary information table 10 shows the sysclk/sys clk# differential clock ac characteristics of the amd ATHLON mp processor model 6. figure 9 on page 31 shows a sample waveform of the sysclk signal. figure 9. sysclk waveform table 10. sysclk and sysclk# ac characteristics symbol parameter description minimum maximum units notes clock frequency 50 133 mhz duty cycle 30% 70% t 1 period 7.5 ns 1, 2 t 2 high time 1.05 ns t 3 low time 1.05 ns t 4 fall time 2 ns t 5 rise time 2 ns period stability 300 ps notes: 1. circuitry driving the amd ATHLON? system bus clock inputs must exhibit a suitably low closed-loop jitter bandwidth to allow th e pll to track the jitter. the ?20db attenuation point, as measured into a 10 - or 20 - pf load must be less than 500 khz. 2. circuitry driving the amd ATHLON system bus clock inputs may pur posely alter the amd ATHLON system bus clock frequency (spread spectrum clock generators). in no cases can the amd ATHLON system bus period violate the minimum specification above. amd ATHLON system bus clock inputs can vary from 100% of the specified frequency to 99% of the specified frequency at a maximum rate of 100 khz. t 5 v cross t 2 t 3 t 4 t 1 v threshold-ac
32 electrical data chapter 7 amd ATHLON? mp processor model 6 opga data sheet for multiprocessor platforms 25480d?june 2002 preliminary information 7.11 amd ATHLON? system bus ac and dc characteristics table 11 shows the dc characteristics of the amd ATHLON system bus used by the amd ATHLON mp processor model 6. see table 8, ?vcc_core voltage and current,? on page 29 for information on t die and vcc_core. for information about sysclk and sysclk#, see ?s ysclk and sysclk#? on page 71 and table 19, ?pin name abbreviations,? on page 52. table 11. amd ATHLON? system bus dc characteristics symbol parameter condition min max units notes v ref dc input reference voltage (0.5*vcc_core) ?50 (0.5*vcc_core) +50 mv 1 i vref_leak_p v ref tristate leakage pullup v in = v ref nominal ?100 a i vref_leak_n v ref tristate leakage pulldown v in = v ref nominal 100 a v ih input high voltage v ref + 200 vcc_core + 500 mv v il input low voltage ?500 v ref ? 200 mv v oh output high voltage i out = ?200 a 0.85 vcc_core vcc_core+500 mv 2 v ol output low voltage i out = 1 ma ?500 400 mv 2 i leak_p tristate leakage pullup v in = vss (ground) ?1 ma i leak_n tristate leakage pulldown v in = vcc_core nominal 1ma c in input pin capacitance 4 12 pf notes: 1. v ref is nominally set to 50% of vcc_core with actual values that are specific to motherboard design implementation. v ref must be created with a sufficiently accurate dc s ource and a sufficiently quiet ac response to adhere to the 50 mv specification list ed above. 2. specified at the t die and vcc_core specifications in this document.
chapter 7 electrical data 33 25480d?june 2002 amd ATHLON? mp processor model 6 opga data sheet for multiprocessor platforms preliminary information the ac characteristics of the amd ATHLON system bus are shown in table 12 on page 33. the parameters are grouped based on the source or destination of the signals involved. table 12. amd ATHLON? system bus ac characteristics group symbol parameter min max units notes all signals t rise output rise slew rate 1 3 v/ns 1 t fall output fall slew rate 1 3 v/ns 1 forward clocks t skew-sameedge output skew with respect to the same clock edge ?385ps2 t skew-diffedge output skew with respect to a different clock edge ? 770 ps 2 t su input data setup time 300 ps 3 t hd input data hold time 300 ps 3 c in capacitance on input clocks 4 12 pf c out capacitance on output clocks 4 12 pf sync t val rstclk to output valid 250 2000 ps 4, 5 t su setup to rstclk 500 ps 4, 6 t hd hold from rstclk 1000 ps 4, 6 notes: 1. rise and fall time ranges are guidelines over which the i/o has been characterized. 2. t skew-sameedge is the maximum skew within a clock forwarded group between any two signals or between any signal and its forward clock, as measured at the package, with respect to the same clock edge. t skew-diffedge is the maximum skew within a clock forwarded group between any two signals or between any signal and its forward clock, as measured at the package, with respect to different clock edges. 3. input su and hd times are with respect to the appropriate clock forward group input clock. 4. the synchronous signals include procrdy, connect, and clkfwdrst. 5. t val is rstclk rising edge to output valid for procrdy. test load is 25 pf. 6. t su is setup of connect/clkfwdrst to rising edge of rstclk. t hd is hold of connect/clkfwdrst from rising edge of rstclk.
34 electrical data chapter 7 amd ATHLON? mp processor model 6 opga data sheet for multiprocessor platforms 25480d?june 2002 preliminary information 7.12 general ac and dc characteristics table 13 shows the amd ATHLON mp processor model 6 ac and dc characteristics of the southbridge, jtag, test, and miscellaneous pins. table 13. general ac and dc characteristics symbol parameter description condition min max units notes v ih input high voltage (vcc_core/2) + 200 mv vcc_core + 300 mv v1,2 v il input low voltage ?300 350 mv 1, 2 v oh output high voltage vcc_core ? 400 vcc_core + 300 mv v ol output low voltage ?300 400 mv i leak_p tristate leakage pullup v in = vss (ground) ?1 ma i leak_n tristate leakage pulldown v in = vcc_core nominal 600 a i oh output high current ?16 ma 3 i ol output low current 16 ma 3 t su sync input setup time 2.0 ns 4, 5 t hd sync input hold time 0.0 ps 4, 5 t delay output delay with respect to rstclk 0.0 6.1 ns 5 notes: 1. characterized across dc supply voltage range. 2. values specified at nominal vcc_core. scale parameters between vcc_core minimum and vcc_core maximum. 3. i ol and i oh are measured at v ol max and v oh min, respectively. 4. synchronous inputs/outputs are specified with respect to rstclk and rstck# at the pins. 5. these are aggregate numbers. 6. edge rates indicate the range ov er which inputs were characterized. 7. in asynchronous operation, the signal mu st persist for this time to enable capture. 8. this value assumes rstclk period is 10 ns ==> tbit = 2*frst. 9. the approximate value for standard case in normal mode operation. 10. this value is dependent on rstclk frequency, divisors, low power mode, and core frequency. 11. reassertions of the signal within this time are not guaranteed to be seen by the core. 12. this value assumes that the skew between rstclk and k7clkout is much less than one phase. 13. this value assumes rstclk and k7clkout are running at the same frequency, though the pr ocessor is capable of other configurations. 14. time to valid is for any open-drain pins. see requirements 7 an d 8 in chapter 8, ?power-up timing requirements,? for more information.
chapter 7 electrical data 35 25480d?june 2002 amd ATHLON? mp processor model 6 opga data sheet for multiprocessor platforms preliminary information t bit input time to acquire 20.0 ns 7, 8 t rpt input time to reacquire 40.0 ns 9?13 t rise signal rise time 1.0 3.0 v/ns 6 t fall signal fall time 1.0 3.0 v/ns 6 c p in pin capacitance 4 12 pf t valid time to data valid 100 ns 14 table 13. general ac and dc characteristics (continued) symbol parameter description condition min max units notes notes: 1. characterized across dc supply voltage range. 2. values specified at nominal vcc_core. scale parameters between vcc_core minimum and vcc_core maximum. 3. i ol and i oh are measured at v ol max and v oh min, respectively. 4. synchronous inputs/outputs are specified with respect to rstclk and rstck# at the pins. 5. these are aggregate numbers. 6. edge rates indicate the range ov er which inputs were characterized. 7. in asynchronous operation, the signal mu st persist for this time to enable capture. 8. this value assumes rstclk period is 10 ns ==> tbit = 2*frst. 9. the approximate value for standard case in normal mode operation. 10. this value is dependent on rstclk frequency, divisors, low power mode, and core frequency. 11. reassertions of the signal within this time are not guaranteed to be seen by the core. 12. this value assumes that the skew between rstclk and k7clkout is much less than one phase. 13. this value assumes rstclk and k7clkout are running at the same frequency, though the pr ocessor is capable of other configurations. 14. time to valid is for any open-drain pins. see requirements 7 an d 8 in chapter 8, ?power-up timing requirements,? for more information.
36 electrical data chapter 7 amd ATHLON? mp processor model 6 opga data sheet for multiprocessor platforms 25480d?june 2002 preliminary information 7.13 open drain test circuit figure 10 is a test circuit that may be used on automated test equipment (ate) to test for validity on those pins. refer to table 13, ?general ac and dc characteristics,? on page 34 for timing requirements. figure 10. general ate open-drain test circuit open-drain pin v termination 1 50 ? 3% i ol = output current 2 notes: 1. v termination = 1.2 v for vid and fid pins v termination = 1.0 v for apic pins 2. i ol = ?16 ma for vid and fid pins i ol = ?12 ma for apic pins
chapter 7 electrical data 37 25480d?june 2002 amd ATHLON? mp processor model 6 opga data sheet for multiprocessor platforms preliminary information 7.14 thermal diode characteristics thermal diode electrical characteristics table 14 shows the amd ATHLON mp processor model 6 characteristics of the on-board thermal diode. table 14. thermal diode el ectrical characteristics symbol parameter description min nom max units notes i fw forward bias current 5 300 a 1 n diode ideality factor 1.002 1.008 1.016 2, 3, 4, 5 notes: 1. the sourcing current should always be used in forward bias only. 2. characterized at 95c with a for ward bias current pair of 10 a and 100 a. 3. not 100% tested. specified by design and limited characterization. 4. the diode ideality factor, n, is a correction factor to the ideal diode equation. for the following equations, use the following variables and constants: n diode ideality factor k boltzmann constant q electron charge constant t diode temperature (kelvin) v be voltage from base to emitter i c collector current i s saturation current n ratio of collector currents the equation for v be is: by sourcing two currents and using the above equation, a difference in base emitter voltage can be found that leads to the following equation for temperature: 5. if a different sourcing current pair is used other than 10 a and 100 a, the following equation should be used to correct the temperature. su btract this offset from the temperature measured by the temperature sensor. for the following equations, use the following variables and constants: i high high sourcing current i low low sourcing current t offset (in c) can be found using the following equation: v be nkt q --------- i c i s ---- -   ln ? = t ? v be nn () ln k q -- - ?? ----------------------------- = t offset 6.0 10 4 ? () i high i low ? () i high i low -----------   ln ------------------------------- - ? 2.34 ? =
38 electrical data chapter 7 amd ATHLON? mp processor model 6 opga data sheet for multiprocessor platforms 25480d?june 2002 preliminary information thermal protection characterization the following section describes parameters relating to thermal protection. the implem entation of thermal control circuitry to control processor temperature is left to the manufacturer to determine how to implement. thermal limits in motherboard design are necessary to protect the processor from thermal damage. t shutdown is the temperature for thermal protection circuitry to initiate shutdown of the processor. t sd_delay is the maximum time allowed from the detection of the over-temperature condition to processor shutdown to prev ent thermal damage to the processor. systems that do not implement thermal protection circuitry or that do not react within the time specified by t sd_delay can cause thermal damage to the processor during the unlikely events of fan failure or powering up the processor without a heat-sink. the processor relies on thermal circuitry on the motherboard to turn off the regulated core voltage to the processor in response to a thermal shutdown event. thermal protection circuitry reference designs and thermal solution guidelines are found in the following documents: amd ATHLON? processor-based motherboard design guide, order# 24363 amd thermal, mechanical, and chassis cooling design guide , order# 23794 http://www1.amd.com/products/ATHLON/thermals table 15 on page 39 shows the t shutdown and t sd_delay specifications for circuitry in motherboard design necessary for thermal protection of the processor.
chapter 7 electrical data 39 25480d?june 2002 amd ATHLON? mp processor model 6 opga data sheet for multiprocessor platforms preliminary information 7.15 apic pins ac and dc characteristics table 16 shows the amd ATHLON mp processor model 6 ac and dc characteristics of the apic pins. table 15. guidelines for platform ther mal protection of the processor symbol parameter description max units notes t shutdown thermal diode shutdown temperature for processor protection 125 c1, 2, 3 t sd_delay maximum allowed time from t shutdown detection to processor shutdown 500 ms 1, 3 notes: 1. the thermal diode is not 100% tested, it is specified by design and limited characterization. 2. the thermal diode is capable of responding to thermal events of 40c/s or faster. 3. the amd ATHLON? xp processor provides a thermal diode for measuring die temperature of the processor. the processor relies on thermal circuitry on the motherboard to turn off the regulated core voltage to the processor in response to a thermal shutdown event. refer to amd ATHLON? processor-based motherboard design guide , order# 24363, for thermal protection circuitry designs. table 16. apic pin ac and dc characteristics symbol parameter description condition min max units notes v ih input high voltage 1.7 2.625 v 1, 2 v il input low voltage ?300 700 mv 1 v oh output high voltage 2.625 v 2 v ol output low voltage ?300 400 mv i leak_p tristate leakage pullup v in = vss (ground) ?1 ma i leak_n tristate leakage pulldown v in = 2.5 v 1ma i ol output low current v ol max 12 ma t rise signal rise time 1.0 3.0 v/ns 3 t fall signal fall time 1.0 3.0 v/ns 3 c pin pin capacitance 4 12 pf notes: 1. characterized across dc supply voltage range. 2. the 2.625-v value is equal to 2.5 v plus a maximum of five percent. 3. edge rates indicate the rang e for characterizing the inputs.
40 electrical data chapter 7 amd ATHLON? mp processor model 6 opga data sheet for multiprocessor platforms 25480d?june 2002 preliminary information
chapter 8 signal and power-up requirements 41 25480d?june 2002 amd ATHLON? mp processor model 6 opga data sheet for multiprocessor platforms preliminary information 8 signal and power-up requirements this chapter describes the amd ATHLON? mp processor model 6 power-up requirements during system power-up and warm resets. 8.1 power-up requirements signal sequence and timing description figure 11 shows the relationship between key signals in the system during a power-up sequen ce. this figure details the requirements of the processor. figure 11. signal relationship re quirements during power-up sequence note: 1. figure 11 represents several signals generically by using names not necessarily consistent with any pin lists or schematics. 2. requirements 1?8 in figure 11 are described in ?power-up timing requirements.? on page 42. 3.3 v supply vcca (2.5 v) (for pll) reset# vcc_core (processor core) nb_reset# pwrok system clock 2 1 3 4 5 6 fid[3:0] 7 8 warm reset condition
42 signal and power-up requirements chapter 8 amd ATHLON? mp processor model 6 opga data sheet for multiprocessor platforms 25480d?june 2002 preliminary information power-up timing requirements. the signal timing requirements are as follows: 1. reset# must be asserted before pwrok is asserted. the amd ATHLON mp processor model 6 does not set the correct clock multiplier if pwrok is asserted prior to a reset# assertion. it is re commended that reset# be asserted at least 10 nanoseconds prior to the assertion of pwrok. in practice, a southbridge asserts reset# milliseconds before pwrok is asserted. 2. all motherboard voltage planes must be within specification before pwrok is asserted. pwrok is an output of the voltage regulation circuit on the motherboard. pwrok indicates that vcc_core and all other voltage planes in the system are within specification. the motherboard is required to delay pwrok assertion for a minimum of three milliseconds from the 3.3 v supply being within specification. this delay ensures that the system clock (sysclk/sysclk#) is operating within specification when pwrok is asserted. the processor core voltage, vcc_core, must be within specification as dictated by the vid[4:0] pins driven by the processor before pwrok is asserted. before pwrok assertion, the amd ATHLON mp processor is clocked by a ring oscillator. the processor pll is powered by vcca. the processor pll does not lock if vcca is not high enough for the processor logic to switch for some period before pwrok is asserted. vcca must be within specification at least five microseconds before pwrok is asserted. in practice vcca, vcc_core, and all other voltage planes must be within specification for several milliseconds before pwrok is asserted. after pwrok is asserted, the processor pll locks to its operational frequency. 3. the system clock (sysclk/sysclk#) must be running before pwrok is asserted. when pwrok is asserted, the processor switches from driving the internal processor clock grid from the ring oscillator to driving from th e pll. the reference system
chapter 8 signal and power-up requirements 43 25480d?june 2002 amd ATHLON? mp processor model 6 opga data sheet for multiprocessor platforms preliminary information clock must be valid at this time. the system clocks are designed to be running af ter 3.3 v has been within specification for three milliseconds. 4. pwrok assertion to deassertion of reset# the duration of reset# assert ion during cold boots is intended to satisfy the time it takes for the pll to lock with a less than 1 ns phase error. the processor pll begins to run after pwrok is asserted and the internal clock grid is switched from the ring oscilla tor to the pll. the pll lock time may take from hundreds of nanoseconds to tens of microseconds. it is recommended that the minimum time between pwrok assert ion to the deassert ion of reset# be at least 1.0 milliseconds . southbridges enforce a delay of 1.5 to 2.0 milliseconds between pwrgd (southbridge version of pwrok) assertion and nb_reset# deassertion. 5. pwrok must be monotonic and meet the timing requirements as defined in ta ble 13, ?general ac and dc characteristics,? on page 34. the processor should not switch between the rising os cillator and the pll after the initial assertion of pwrok. 6. nb_reset# must be asserted (causing connect to also assert) before reset# is deasserted. in practice all southbridges enforce this requirement. if nb_reset# does not asse rt until after reset# has deasserted, the processor misinterprets the connect assertion (due to nb_reset# being asserted) as the beginning of the sip transfer . there must be sufficient overlap in the resets to ensure that connect is sampled asserted by the processor before reset# is deasserted. 7. the fid[3:0] signals are valid within 100 ns after pwrok is asserted. the chipset must not sample the fid[3:0] signals until they become valid. refer to the amd ATHLON? processor-based mother board design guide , order# 24363, for the specific implementation and additional circuitry required. 8. the fid[3:0] signals become valid within 100 ns after reset# is asserted. refer to the amd ATHLON? processor- based motherboard design guide , order# 24363, for the specific implementation and additional circuitry required.
44 signal and power-up requirements chapter 8 amd ATHLON? mp processor model 6 opga data sheet for multiprocessor platforms 25480d?june 2002 preliminary information clock multiplier selection (fid[3:0]) the chipset samples the fid[3:0] signals in a chipset-specific manner from the processor a nd uses this information to determine the correct serial init ialization packet (sip). the chipset then sends the sip info rmation to the processor for configuration of the amd ATHLON system bus for the clock multiplier that determines the processor frequency indicated by the fid[3:0] code. the sip is sent to the processor using the sip protocol. this protocol uses the procrdy, connect, and clkfwdrst signals, that are synchronous to sysclk. for more information, see ?fid[3:0] pins? on page 68. serial initialization packet (sip) protocol. refer to amd ATHLON? system bus specification , order# 21902 for details of the sip protocol. 8.2 processor warm reset requirements northbridge reset pins reset# cannot be asse rted to the processor without also being asserted to the northbridge. re set# to the northbridge is the same as pci reset#. the minimum assertion for pci reset# is one millisecond. southbridges enforce a minimum assertion of reset# for the processor, northbridge, and pci of 1.5 to 2.0 milliseconds.
chapter 9 mechanical data 45 25480d?june 2002 amd ATHLON? mp processor model 6 opga data sheet for multiprocessor platforms preliminary information 9 mechanical data 9.1 introduction the amd ATHLON? mp processor model 6 connects to the motherboard through a pin grid array (pga) socket named socket a. this processor utilizes the organic pin grid array (opga) package type, desc ribed in ?opga package description? on page 46. for more information, see the amd ATHLON? processor-based motherboard design guide , order# 24363. 9.2 die loading the processor die on opga packages is exposed at the top of the package. this feature facilitat es heat transfer from the die to an approved heat sink. an y heat sink design should avoid loads on corners and edges of die. the opga package has compliant pads that serve to br ing surfaces in planar contact. tool-assisted zero insertion force sockets should be designed so that no load is placed on the substrate of the package. table 17 shows the mechanical loading specifications for the processor die. it is critical th at the mechanical loading of the heat sink does not exceed the limits shown in table 17. table 17. mechanical loading for the opga package location dynamic (max) static (max) units note die surface 100 30 lbf 1 die edge 10 10 lbf 2 notes: 1. load specified for coplanar contact to die surface. 2. load defined for a surface at no more than a two degree angle of inclination to die surface.
46 mechanical data chapter 9 amd ATHLON? mp processor model 6 opga data sheet for multiprocessor platforms 25480d?june 2002 preliminary information 9.3 opga package description figure 12 on page 47 shows a diagram and notes for the amd ATHLON mp processor model 6 opga package. table 18 provides the dimensions in millimeters assigned to the letters and symbols shown in the figure 12 diagram. table 18. dimensions for the amd ATHLON? mp processor model 6 opga package letter or symbol minimum dimension * maximum dimension * letter or symbol minimum dimension * maximum dimension * d/e 49.27 49.78 g/h ? 4.50 d1/e1 45.72 bsc a 1.942 ref d2 11.698 ref a1 1.00 1.20 d3 3.30 3.60 a2 0.80 0.88 d4 6.40 6.95 a3 0.116 ? d5 6.40 6.95 a4 ? 1.90 d6 3.35 3.90 p?6.60 d7 7.48 8.03 b 0.43 0.50 d8 3.05 3.35 b1 1.40 ref e2 11.01 ref s 1.435 2.375 e3 2.35 2.65 l 3.05 3.31 e4 7.90 8.45 m 37 e5 3.29 3.84 n 453 e8 7.94 8.49 e 1.27 bsc e9 1.66 1.96 e1 2.54 bsc note: * dimensions are given in millimeters.
chapter 9 mechanical data 47 25480d?june 2002 amd ATHLON? mp processor model 6 opga data sheet for multiprocessor platforms preliminary information figure 12. amd ATHLON? mp processor model 6 opga package
48 mechanical data chapter 9 amd ATHLON? mp processor model 6 opga data sheet for multiprocessor platforms 25480d?june 2002 preliminary information
chapter 10 pin descriptions 49 25480d?june 2002 amd ATHLON? mp processor model 6 opga data sheet for multiprocessor platforms preliminary information 10 pin descriptions 10.1 pin diagram and pin name abbreviations figure 13 on page 50 shows the staggered pin grid array (pga) for the amd ATHLON? mp processor model 6. because some of the pin names are too long to fit in the grid, they are abbreviated. figure 14 on page 51 shows the bottomside view of the array. table 19 on page 52 lists all the pins in alphabetical order by pin name, along with the abbreviation where necessary.
50 pin descriptions chapter 10 amd ATHLON? mp processor model 6 opga data sheet for multiprocessor platforms 25480d?june 2002 preliminary information 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 a sao#12 sao#5 sao#3 sd#55 sd#61 sd#53 sd#63 sd#62 sck#7 sd#57 sd#39 sd#35 sd#34 sd#44 sck#5 sdoc#2 sd#40 sd#30 a b vss vcc vss vcc vss vcc vss vcc vss vcc vss vcc vss vcc vss vcc vss vcc b c sao#7 sao#9 sao#8 sao#2 sd#54 sdoc#3 sck#6 sd#51 sd#60 sd#59 sd#56 sd#37 sd#47 sd#38 sd#45 sd#43 sd#42 sd#41 sdoc#1 c d vcc vcc vss vcc vss vcc vss vcc vss vcc vss vcc vss vcc vss vcc vss vss d e sao#11 saoc# sao#4 sao#6 sd#52 sd#50 sd#49 sdic#3 sd#48 sd#58 sd#36 sd#46 sck#4 sdic#2 sd#33 sd#32 sck#3 sd#31 sd#22 e f vss vss vss nc vss vcc vss vcc vss vcc vss vcc vss vcc nc vcc vcc vcc f g sao#10 sao#14 sao#13 key key nc nc key key nc nc key key nc nc nc sd#20 sd#23 sd#21 g h vcc vcc nc nc nc vcc vss vcc vss vcc vss vcc vss nc nc nc vss vss h j sao#0 sao#1 nc vid[4] nc sd#19 sdic#1 sd#29 j k vss vss vss nc nc vcc vcc vcc k l vid[0] vid[1] vid[2] vid[3] nc sd#26 sck#2 sd#28 l m vcc vcc vcc vcc vss vss vss vss m n picclk picd#0 picd#1 key nc sd#25 sd#27 sd#18 n p vss vss vss vss vcc vcc vcc vcc p q tck tms scnsn key nc sd#24 sd#17 sd#16 q r vcc vcc vcc vcc vss vss vss vss r s scnck1 scninv scnck2 thda nc sd#7 sd#15 sd#6 s t vss vss vss vss vcc vcc vcc vcc t u tdi trst# tdo thdc nc sd#5 sd#4 sck#0 u v vcc vcc vcc vcc vss vss vss vss v w fid[0] fid[1] vref_s nc nc sdic#0 sd#2 sd#1 w x vss vss vss vss vcc vcc vcc vcc x y fid[2] fid[3] nc key nc sck#1 sd#3 sd#12 y z vcc vcc vcc vcc vss vss vss vss z aa dbrdy dbreq# nc key nc sd#8 sd#0 sd#13 aa ab vss vss vss vss vcc vcc vcc vcc ab ac stpc# pltst# zn nc nc sd#10 sd#14 sd#11 ac ad vcc vcc vcc nc nc vss vss vss ad ae a20m# pwrok zp nc nc sai#5 sdoc#0 sd#9 ae af vss vss nc nc nc vss vcc vss vcc vss vcc vss vcc nc nc nc vcc vcc af ag ferr reset# nc key key corefb corefb# key key nc nc nc nc key key nc sai#2 sai#11 sai#7 ag ah vcc vcc amd nc vcc vss vcc vss vcc vss vcc vss vcc vss nc vss vss vss ah aj ignne# init# vcc nc nc nc anlog nc nc nc clkfr vcca plbyp# nc sai#0 sfillv# saic# sai#6 sai#3 aj ak vss vss cpr# nc vcc vss vcc vss vcc vss vcc vss vcc vss vcc vss vcc vcc ak al intr flush# vcc nc nc nc plmn2 plbyc# clkin# rclk# k7co cnnct nc nc sai#1 sdov# sai#8 sai#4 sai#10 al am vcc vss vss nc vcc vss vcc vss vcc vss vcc vss vcc vss vcc vss vcc vss am an nmi smi# nc nc nc plmn1 plbyc clkin rclk k7co# prcrdy nc nc sai#12 sai#14 sdinv# sai#13 sai#9 an 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 amd ATHLON? mp processor model 6 topside view figure 13. amd ATHLON? mp processor model 6 pin diagram?topside view
chapter 10 pin descriptions 51 amd ATHLON? mp processor model 6 opga data sheet for multiprocessor platforms 25480d?june 2002 preliminary information a b c d e f g h j k l m n p q r s t u v w x y z aa ab ac ad ae af ag ah aj ak al am an 1 sao#7 sao#11 sao#10 sao#0 vid[0] picclk tck scnck1 tdi fid[0] fid[2] dbrdy stpc# a20m# ferr ignne# intr 1 2 vss vcc vss vcc vss vcc vss vcc vss vcc vss vcc vss vcc vss vcc vss vcc 2 3 sao#12 sao#9 saoc# sao#14 sao#1 vid[1] picd#0 tms scninv trst# fid[1] fid[3] dbreq# pltst# pwrok reset# init# flush# nmi 3 4 vcc vcc vss vcc vss vcc vss vcc vss vcc vss vcc vss vcc vss vcc vss vss 4 5 sao#5 sao#8 sao#4 sao#13 nc vid[2] picd#1 scnsn scnck2 tdo vref_s nc nc zn zp nc vcc vcc smi# 5 6 vss vss vss nc vss vcc vss vcc vss vcc vss vcc vss vcc nc amd cpr# vss 6 7 sao#3 sao#2 sao#6 key vid[4] vid[3] key key thda thdc nc key key nc nc key nc nc nc 7 8 vcc vcc nc nc nc vcc vss vcc vss vcc vss vcc vss nc nc nc nc nc 8 9 sd#55 sd#54 sd#52 key keyncncnc 9 10 vss vss vss nc nc vcc vcc vcc 10 11 sd#61 sdoc#3 sd#50 nc corefb nc nc nc 11 12 vcc vcc vcc vcc vss vss vss vss 12 13 sd#53 sck#6 sd#49 nc corefb# anlog plmn2 plmn1 13 14 vss vss vss vss vcc vcc vcc vcc 14 15 sd#63 sd#51 sdic#3 key key nc plbyc# plbyc 15 16 vcc vcc vcc vcc vss vss vss vss 16 17 sd#62 sd#60 sd#48 key key nc clkin# clkin 17 18 vss vss vss vss vcc vcc vcc vcc 18 19 sck#7 sd#59 sd#58 nc nc nc rclk# rclk 19 20 vcc vcc vcc vcc vss vss vss vss 20 21 sd#57 sd#56 sd#36 nc nc clkfr k7co k7co# 21 22 vss vss vss vss vcc vcc vcc vcc 22 23 sd#39 sd#37 sd#46 key nc vcca cnnct prcrdy 23 24 vcc vcc vcc vcc vss vss vss vss 24 25 sd#35 sd#47 sck#4 key nc plbyp# nc nc 25 26 vss vss vss vss vcc vcc vcc vcc 26 27 sd#34 sd#38 sdic#2 nc keyncncnc 27 28 vcc vcc vcc nc nc vss vss vss 28 29 sd#44 sd#45 sd#33 nc key sai#0 sai#1 sai#12 29 30 vss vss nc nc nc vss vcc vss vcc vss vcc vss vcc nc nc nc vcc vcc 30 31 sck#5sd#43sd#32ncncncncncncncncnc nc nc nc ncsfillv#sdov#sai#14 31 32 vcc vcc vcc nc vcc vss vcc vss vcc vss vcc vss vcc vss nc vss vss vss 32 33 sdoc#2 sd#42 sck#3 sd#20 sd#19 sd#26 sd#25 sd#24 sd#7 sd#5 sdic#0 sck#1 sd#8 sd#10 sai#5 sai#2 saic# sai#8 sdinv# 33 34 vss vss vcc vss vcc vss vcc vss vcc vss vcc vss vcc vss vcc vss vcc vcc 34 35 sd#40 sd#41 sd#31 sd#23 sdic#1 sck#2 sd#27 sd#17 sd#15 sd#4 sd#2 sd#3 sd#0 sd#14 sdoc#0 sai#11 sai#6 sai#4 sai#13 35 36 vcc vss vcc vss vcc vss vcc vss vcc vss vcc vss vcc vss vcc vss vcc vss 36 37 sd#30 sdoc#1 sd#22 sd#21 sd#29 sd#28 sd#18 sd#16 sd#6 sck#0 sd#1 sd#12 sd#13 sd#11 sd#9 sai#7 sai#3 sai#10 sai#9 37 a b c d e f g h j k l m n p q r s t u v w x y z aa ab ac ad ae af ag ah aj ak al am an amd ATHLON? mp processor model 6 bottomside view figure 14. amd ATHLON? mp processor model 6 pin diagram?bottomside view
52 pin descriptions chapter 10 amd ATHLON? mp processor model 6 opga data sheet for multiprocessor platforms 25480d?june 2002 preliminary information table 19. pin name abbreviations abbreviation full name pin a20m# ae1 amd ah6 anlog analog aj13 clkfr clkfwdrst aj21 clkin an17 clkin# al17 cnnct connect al23 corefb ag11 corefb# ag13 cpr# cpu_presence# ak6 dbrdy aa1 dbreq# aa3 ferr ag1 fid[0] w1 fid[1] w3 fid[2] y1 fid[3] y3 flush# al3 ignne# aj1 init# aj3 intr al1 k7co k7clkout al21 k7co# k7clkout# an21 key g7 key g9 key g15 key g17 key g23 key g25 key n7 key q7 key y7 key aa7 key ag7 key ag9 key ag15 key ag17 key ag27 key ag29 nc f8 nc f30 nc g11 nc g13 nc g19 nc g21 nc g27 nc g29 nc g31 nc h6 nc h8 nc h10 nc h28 nc h30 nc h32 nc j5 nc j31 nc k8 nc k30 nc l31 nc n31 nc q31 nc s31 nc u31 nc w7 nc w31 nc y5 nc y31 nc aa5 nc aa31 nc ac7 nc ac31 nc ad8 nc ad30 nc ae7 nc ae31 nc af6 nc af8 nc af10 table 19. pin name abbreviations (continued) abbreviation full name pin
chapter 10 pin descriptions 53 25480d?june 2002 amd ATHLON? mp processor model 6 opga data sheet for multiprocessor platforms preliminary information nc af28 nc af30 nc af32 nc ag5 nc ag19 nc ag21 nc ag23 nc ag25 nc ag31 nc ah8 nc ah30 nc aj7 nc aj9 nc aj11 nc aj15 nc aj17 nc aj19 nc aj27 nc ak8 nc al7 nc al9 nc al11 nc al25 nc al27 nc am8 nc an7 nc an9 nc an11 nc an25 nc an27 nmi an3 picclk n1 picd#0 picd[0]# n3 picd#1 picd[1]# n5 plbyp# pllbypass# aj25 plbyc pllbypassclk an15 plbyc# pllbypassclk# al15 plmn1 pllmon1 an13 plmn2 pllmon2 al13 table 19. pin name abbreviations (continued) abbreviation full name pin pltst# plltest# ac3 prcrdy procready an23 pwrok ae3 reset# ag3 rclk rstclk an19 rclk# rstclk# al19 sai#0 saddin[0]# aj29 sai#1 saddin[1]# al29 sai#2 saddin[2]# ag33 sai#3 saddin[3]# aj37 sai#4 saddin[4]# al35 sai#5 saddin[5]# ae33 sai#6 saddin[6]# aj35 sai#7 saddin[7]# ag37 sai#8 saddin[8]# al33 sai#9 saddin[9]# an37 sai#10 saddin[10]# al37 sai#11 saddin[11]# ag35 sai#12 saddin[12]# an29 sai#13 saddin[13]# an35 sai#14 saddin[14]# an31 saic# saddinclk# aj33 sao#0 saddout[0]# j1 sao#1 saddout[1]# j3 sao#2 saddout[2]# c7 sao#3 saddout[3]# a7 sao#4 saddout[4]# e5 sao#5 saddout[5]# a5 sao#6 saddout[6]# e7 sao#7 saddout[7]# c1 sao#8 saddout[8]# c5 sao#9 saddout[9]# c3 sao#10 saddout[10]# g1 sao#11 saddout[11]# e1 sao#12 saddout[12]# a3 sao#13 saddout[13]# g5 sao#14 saddout[14]# g3 saoc# saddoutclk# e3 scnck1 scanclk1 s1 table 19. pin name abbreviations (continued) abbreviation full name pin
54 pin descriptions chapter 10 amd ATHLON? mp processor model 6 opga data sheet for multiprocessor platforms 25480d?june 2002 preliminary information scnck2 scanclk2 s5 scninv scaninteval s3 scnsn scanshiften q5 sck#0 scheck[0]# u37 sck#1 scheck[1]# y33 sck#2 scheck[2]# l35 sck#3 scheck[3]# e33 sck#4 scheck[4]# e25 sck#5 scheck[5]# a31 sck#6 scheck[6]# c13 sck#7 scheck[7]# a19 sd#0 sdata[0]# aa35 sd#1 sdata[1]# w37 sd#2 sdata[2]# w35 sd#3 sdata[3]# y35 sd#4 sdata[4]# u35 sd#5 sdata[5]# u33 sd#6 sdata[6]# s37 sd#7 sdata[7]# s33 sd#8 sdata[8]# aa33 sd#9 sdata[9]# ae37 sd#10 sdata[10]# ac33 sd#11 sdata[11]# ac37 sd#12 sdata[12]# y37 sd#13 sdata[13]# aa37 sd#14 sdata[14]# ac35 sd#15 sdata[15]# s35 sd#16 sdata[16]# q37 sd#17 sdata[17]# q35 sd#18 sdata[18]# n37 sd#19 sdata[19]# j33 sd#20 sdata[20]# g33 sd#21 sdata[21]# g37 sd#22 sdata[22]# e37 sd#23 sdata[23]# g35 sd#24 sdata[24]# q33 sd#25 sdata[25]# n33 sd#26 sdata[26]# l33 sd#27 sdata[27]# n35 table 19. pin name abbreviations (continued) abbreviation full name pin sd#28 sdata[28]# l37 sd#29 sdata[29]# j37 sd#30 sdata[30]# a37 sd#31 sdata[31]# e35 sd#32 sdata[32]# e31 sd#33 sdata[33]# e29 sd#34 sdata[34]# a27 sd#35 sdata[35]# a25 sd#36 sdata[36]# e21 sd#37 sdata[37]# c23 sd#38 sdata[38]# c27 sd#39 sdata[39]# a23 sd#40 sdata[40]# a35 sd#41 sdata[41]# c35 sd#42 sdata[42]# c33 sd#43 sdata[43]# c31 sd#44 sdata[44]# a29 sd#45 sdata[45]# c29 sd#46 sdata[46]# e23 sd#47 sdata[47]# c25 sd#48 sdata[48]# e17 sd#49 sdata[49]# e13 sd#50 sdata[50]# e11 sd#51 sdata[51]# c15 sd#52 sdata[52]# e9 sd#53 sdata[53]# a13 sd#54 sdata[54]# c9 sd#55 sdata[55]# a9 sd#56 sdata[56]# c21 sd#57 sdata[57]# a21 sd#58 sdata[58]# e19 sd#59 sdata[59]# c19 sd#60 sdata[60]# c17 sd#61 sdata[61]# a11 sd#62 sdata[62]# a17 sd#63 sdata[63]# a15 sdic#0 sdatainclk[0]# w33 sdic#1 sdatainclk[1]# j35 sdic#2 sdatainclk[2]# e27 table 19. pin name abbreviations (continued) abbreviation full name pin
chapter 10 pin descriptions 55 25480d?june 2002 amd ATHLON? mp processor model 6 opga data sheet for multiprocessor platforms preliminary information sdic#3 sdatainclk[3]# e15 sdinv# sdatainvalid# an33 sdoc#0 sdataoutclk[0]# ae35 sdoc#1 sdataoutclk[1]# c37 sdoc#2 sdataoutclk[2]# a33 sdoc#3 sdataoutclk[3]# c11 sdov# sdataoutvalid# al31 sfillv# sfillvalid# aj31 smi# an5 stpc# stpclk# ac1 tck q1 tdi u1 tdo u5 thda thermda s7 thdc thermdc u7 tms q3 trst# u3 vcc vcc_core b4 vcc vcc_core b8 vcc vcc_core b12 vcc vcc_core b16 vcc vcc_core b20 vcc vcc_core b24 vcc vcc_core b28 vcc vcc_core b32 vcc vcc_core b36 vcc vcc_core d2 vcc vcc_core d4 vcc vcc_core d8 vcc vcc_core d12 vcc vcc_core d16 vcc vcc_core d20 vcc vcc_core d24 vcc vcc_core d28 vcc vcc_core d32 vcc vcc_core f12 vcc vcc_core f16 vcc vcc_core f20 vcc vcc_core f24 table 19. pin name abbreviations (continued) abbreviation full name pin vcc vcc_core f28 vcc vcc_core f32 vcc vcc_core f34 vcc vcc_core f36 vcc vcc_core h2 vcc vcc_core h4 vcc vcc_core h12 vcc vcc_core h16 vcc vcc_core h20 vcc vcc_core h24 vcc vcc_core k32 vcc vcc_core k34 vcc vcc_core k36 vcc vcc_core m2 vcc vcc_core m4 vcc vcc_core m6 vcc vcc_core m8 vcc vcc_core p30 vcc vcc_core p32 vcc vcc_core p34 vcc vcc_core p36 vcc vcc_core r2 vcc vcc_core r4 vcc vcc_core r6 vcc vcc_core r8 vcc vcc_core t30 vcc vcc_core t32 vcc vcc_core t34 vcc vcc_core t36 vcc vcc_core v2 vcc vcc_core v4 vcc vcc_core v6 vcc vcc_core v8 vcc vcc_core x30 vcc vcc_core x32 vcc vcc_core x34 vcc vcc_core x36 vcc vcc_core z2 vcc vcc_core z4 table 19. pin name abbreviations (continued) abbreviation full name pin
56 pin descriptions chapter 10 amd ATHLON? mp processor model 6 opga data sheet for multiprocessor platforms 25480d?june 2002 preliminary information vcc vcc_core z6 vcc vcc_core z8 vcc vcc_core ab30 vcc vcc_core ab32 vcc vcc_core ab34 vcc vcc_core ab36 vcc vcc_core ad2 vcc vcc_core ad4 vcc vcc_core ad6 vcc vcc_core af14 vcc vcc_core af18 vcc vcc_core af22 vcc vcc_core af26 vcc vcc_core af34 vcc vcc_core af36 vcc vcc_core ah2 vcc vcc_core ah4 vcc vcc_core ah10 vcc vcc_core ah14 vcc vcc_core ah18 vcc vcc_core ah22 vcc vcc_core ah26 vcc vcc_core ak10 vcc vcc_core ak14 vcc vcc_core ak18 vcc vcc_core ak22 vcc vcc_core ak26 vcc vcc_core ak30 vcc vcc_core ak34 vcc vcc_core ak36 vcc vcc_core aj5 vcc vcc_core al5 vcc vcc_core am2 vcc vcc_core am10 vcc vcc_core am14 vcc vcc_core am18 vcc vcc_core am22 vcc vcc_core am26 vcc vcc_core am22 table 19. pin name abbreviations (continued) abbreviation full name pin vcc vcc_core am26 vcc vcc_core am30 vcc vcc_core am34 vcca aj23 vid[0] l1 vid[1] l3 vid[2] l5 vid[3] l7 vid[4] j7 vref_s vref_sys w5 vss b2 vss b6 vss b10 vss b14 vss b18 vss b22 vss b26 vss b30 vss b34 vss d6 vss d10 vss d14 vss d18 vss d22 vss d26 vss d30 vss d34 vss d36 vss f2 vss f4 vss f6 vss f10 vss f14 vss f18 vss f22 vss f26 vss h14 vss h18 vss h22 table 19. pin name abbreviations (continued) abbreviation full name pin
chapter 10 pin descriptions 57 25480d?june 2002 amd ATHLON? mp processor model 6 opga data sheet for multiprocessor platforms preliminary information vss h26 vss h34 vss h36 vss k2 vss k4 vss k6 vss m30 vss m32 vss m34 vss m36 vss p2 vss p4 vss p6 vss p8 vss r30 vss r32 vss r34 vss r36 vss t2 vss t4 vss t6 vss t8 vss v30 vss v32 vss v34 vss v36 vss x2 vss x4 vss x6 vss x8 vss z30 vss z32 vss z34 vss z36 vss ab2 vss ab8 vss ab4 vss ab6 vss ad32 table 19. pin name abbreviations (continued) abbreviation full name pin vss ad34 vss ad36 vss af2 vss af4 vss af12 vss af16 vss ah12 vss ah16 vss ah20 vss ah24 vss ah28 vss ah32 vss ah34 vss ah36 vss ak2 vss ak4 vss ak12 vss ak16 vss ak20 vss ak24 vss ak28 vss ak32 vss am4 vss am6 vss am12 vss am16 vss am20 vss am24 vss am28 vss am32 vss am36 zn ac5 zp ae5 table 19. pin name abbreviations (continued) abbreviation full name pin
58 pin descriptions chapter 10 amd ATHLON? mp processor model 6 opga data sheet for multiprocessor platforms 25480d?june 2002 preliminary information table 20. cross-reference by pin location pin name description l p r a1 no pin page 70 - - - a3 saddout[12]# p o g a5 saddout[5]# p o g a7 saddout[3]# p o g a9 sdata[55]# p b p a11 sdata[61]# p b p a13 sdata[53]# p b g a15 sdata[63]# p b g a17 sdata[62]# p b g a19 scheck[7]# page 70 p b g a21 sdata[57]# p b g a23 sdata[39]# p b g a25 sdata[35]# p b p a27 sdata[34]# p b p a29 sdata[44]# p b g a31 scheck[5]# page 70 p b g a33 sdataoutclk[2]# p o p a35 sdata[40]# p b g a37 sdata[30]# p b p b2 vss --- b4 vcc_core --- b6 vss --- b8 vcc_core --- b10 vss --- b12 vcc_core --- b14 vss --- b16 vcc_core --- b18 vss --- b20 vcc_core --- b22 vss --- b24 vcc_core --- b26 vss --- b28 vcc_core --- b30 vss --- b32 vcc_core --- b34 vss --- b36 vcc_core --- c1 saddout[7]# p o g table 20. cross-reference by pin location pin name description l p r 10.2 pin list table 20 cross-references socket a pin location to signal name. the ?l? (level) column shows the electrical specification for this pin. ?p? indicates a push-pull mode driven by a single source. ?o? indicates open-drain mode that allows devices to share the pin. note: the socket a amd ATHLON mp processor supports push-pull drivers. for more information, see ?push-pull (pp) drivers? on page 6. the ?p? (port) column indicates if this signal is an input (i), output (o), or bidirectional (b) signal. the ?r? (reference) column indicates if this signal should be referenced to vss (g) or vcc_core (p) planes for the purpose of signal routing with respect to the current return paths.
chapter 10 pin descriptions 59 25480d?june 2002 amd ATHLON? mp processor model 6 opga data sheet for multiprocessor platforms preliminary information c3 saddout[9]# p o g c5 saddout[8]# p o g c7 saddout[2]# p o g c9 sdata[54]# p b p c11 sdataoutclk[3]# p o g c13 scheck[6]# page 70 p b g c15 sdata[51]# p b p c17 sdata[60]# p b g c19 sdata[59]# p b g c21 sdata[56]# p b g c23 sdata[37]# p b p c25 sdata[47]# p b g c27 sdata[38]# p b g c29 sdata[45]# p b g c31 sdata[43]# p b g c33 sdata[42]# p b g c35 sdata[41]# p b g c37 sdataoutclk[1]# p o g d2 vcc_core --- d4 vcc_core --- d6 vss --- d8 vcc_core --- d10 vss --- d12 vcc_core --- d14 vss --- d16 vcc_core --- d18 vss --- d20vcc_core --- d22vss --- d24vcc_core --- d26vss --- d28vcc_core --- d30vss --- d32vcc_core --- table 20. cross-reference by pin location pin name description l p r d34vss --- d36vss --- e1 saddout[11]# p o p e3 saddoutclk# p o g e5 saddout[4]# p o p e7 saddout[6]# p o g e9 sdata[52]# p b p e11 sdata[50]# p b p e13 sdata[49]# p b g e15 sdatainclk[3]# p i g e17 sdata[48]# p b p e19 sdata[58]# p b g e21 sdata[36]# p b p e23 sdata[46]# p b p e25 scheck[4]# page 70 p b p e27 sdatainclk[2]# p i g e29 sdata[33]# p b p e31 sdata[32]# p b p e33 scheck[3]# page 70 p b p e35 sdata[31]# p b p e37 sdata[22]# p b g f2 vss --- f4 vss --- f6 vss --- f8 nc pin page 70 - - - f10 vss --- f12 vcc_core --- f14 vss --- f16 vcc_core --- f18 vss --- f20 vcc_core --- f22 vss --- f24 vcc_core --- f26 vss --- table 20. cross-reference by pin location pin name description l p r (continued)
60 pin descriptions chapter 10 amd ATHLON? mp processor model 6 opga data sheet for multiprocessor platforms 25480d?june 2002 preliminary information f28 vcc_core --- f30 nc pin page 70 - - - f32 vcc_core --- f34 vcc_core --- f36 vcc_core --- g1 saddout[10]# p o p g3 saddout[14]# p o g g5 saddout[13]# p o g g7 key pin page 69 - - - g9 key pin page 69 - - - g11 nc pin page 70 - - - g13 nc pin page 70 - - - g15 key pin page 69 - - - g17 key pin page 69 - - - g19 nc pin page 70 - - - g21 nc pin page 70 - - - g23 key pin page 69 - - - g25 key pin page 69 - - - g27 nc pin page 70 - - - g29 nc pin page 70 - - - g31 nc pin page 70 - - - g33 sdata[20]# p b g g35 sdata[23]# p b g g37 sdata[21]# p b g h2 vcc_core --- h4 vcc_core --- h6 nc pin page 70 - - - h8 nc pin page 70 - - - h10 nc pin page 70 - - - h12 vcc_core --- h14 vss --- h16 vcc_core --- h18 vss --- h20vcc_core --- table 20. cross-reference by pin location pin name description l p r h22vss --- h24vcc_core --- h26vss --- h28 nc pin page 70 - - - h30 nc pin page 70 - - - h32 nc pin page 70 - - - h34vss --- h36vss --- j1 saddout[0]# page 70 p o - j3 saddout[1]# page 70 p o - j5 nc pin page 70 - - - j7 vid[4] page 71 o o - j31 nc pin page 70 - - - j33 sdata[19]# p b g j35 sdatainclk[1]# p i p j37 sdata[29]# p b p k2 vss --- k4 vss --- k6 vss --- k8 nc pin page 70 - - - k30 nc pin page 70 - - - k32 vcc_core --- k34 vcc_core --- k36 vcc_core --- l1 vid[0] page 71 o o - l3 vid[1] page 71 o o - l5 vid[2] page 71 o o - l7 vid[3] page 71 o o - l31 nc pin page 70 - - - l33 sdata[26]# p b p l35 scheck[2]# page 70 p b g l37 sdata[28]# p b p m2 vcc_core --- m4 vcc_core --- table 20. cross-reference by pin location pin name description l p r (continued)
chapter 10 pin descriptions 61 25480d?june 2002 amd ATHLON? mp processor model 6 opga data sheet for multiprocessor platforms preliminary information m6 vcc_core --- m8 vcc_core --- m30vss --- m32vss --- m34vss --- m36vss --- n1 picclk page 66 o i - n3 picd#[0] page 66 o b - n5 picd#[1] page 66 o b - n7 key pin page 69 - - - n31 nc pin page 70 - - - n33 sdata[25]# p b p n35 sdata[27]# p b p n37 sdata[18]# p b g p2 vss --- p4 vss --- p6 vss --- p8 vss --- p30 vcc_core --- p32 vcc_core --- p34 vcc_core --- p36 vcc_core --- q1 tck page 69 p i - q3 tms page 69 p i - q5 scanshiften page 70 p i - q7 key pin page 69 - - - q31 nc pin page 70 - - - q33 sdata[24]# p b p q35 sdata[17]# p b g q37 sdata[16]# p b g r2 vcc_core - - - r4 vcc_core - - - r6 vcc_core - - - r8 vcc_core - - - table 20. cross-reference by pin location pin name description l p r r30 vss --- r32 vss --- r34 vss --- r36 vss --- s1 scanclk1 page 70 p i - s3 scaninteval page 70 p i - s5 scanclk2 page 70 p i - s7 thermda page 71 - - - s31 nc pin page 70 - - - s33 sdata[7]# p b g s35 sdata[15]# p b p s37 sdata[6]# p b g t2 vss --- t4 vss --- t6 vss --- t8 vss --- t30 vcc_core --- t32 vcc_core --- t34 vcc_core --- t36 vcc_core --- u1 tdi page 69 p i - u3 trst# page 69 p i - u5 tdo page 69 p o - u7 thermdc page 71 - - - u31 nc pin page 70 - - - u33 sdata[5]# p b g u35 sdata[4]# p b g u37 scheck[0]# page 70 p b g v2 vcc_core - - - v4 vcc_core - - - v6 vcc_core - - - v8 vcc_core - - - v30 vss --- v32 vss --- table 20. cross-reference by pin location pin name description l p r (continued)
62 pin descriptions chapter 10 amd ATHLON? mp processor model 6 opga data sheet for multiprocessor platforms 25480d?june 2002 preliminary information v34 vss --- v36 vss --- w1 fid[0] page 68 o o - w3 fid[1] page 68 o o - w5 vrefsys page 72 p - - w7 nc pin page 70 - - - w31 nc pin page 70 - - - w33 sdatainclk[0]# p i g w35 sdata[2]# p b g w37 sdata[1]# p b p x2 vss --- x4 vss --- x6 vss --- x8 vss --- x30 vcc_core --- x32 vcc_core --- x34 vcc_core --- x36 vcc_core --- y1 fid[2] page 68 o o - y3 fid[3] page 68 o o - y5 nc pin page 70 - - - y7 key pin page 69 - - - y31 nc pin page 70 - - - y33 scheck[1]# page 70 p b p y35 sdata[3]# p b g y37 sdata[12]# p b p z2 vcc_core --- z4 vcc_core --- z6 vcc_core --- z8 vcc_core --- z30 vss --- z32 vss --- z34 vss --- z36 vss --- table 20. cross-reference by pin location pin name description l p r aa1 dbrdy page 67 p o - aa3 dbreq# page 67 p i - aa5nc --- aa7 key pin page 69 - - - aa31 nc pin page 70 - - - aa33 sdata[8]# p b p aa35 sdata[0]# p b g aa37 sdata[13]# p b g ab2vss --- ab4vss --- ab6vss --- ab8vss --- ab30 vcc_core - - - ab32 vcc_core - - - ab34 vcc_core - - - ab36 vcc_core - - - ac1 stpclk# page 71 p i - ac3 plltest# page 70 p i - ac5 zn page 72 p - - ac7nc --- ac31 nc pin page 70 - - - ac33 sdata[10]# p b p ac35 sdata[14]# p b g ac37 sdata[11]# p b g ad2vcc_core --- ad4vcc_core --- ad6vcc_core --- ad8 nc pin page 70 - - - ad30 nc pin page 70 - - - ad32vss --- ad34vss --- ad36vss --- ae1 a20m# p i - ae3 pwrok p i - table 20. cross-reference by pin location pin name description l p r (continued)
chapter 10 pin descriptions 63 25480d?june 2002 amd ATHLON? mp processor model 6 opga data sheet for multiprocessor platforms preliminary information ae5 zp page 72 p - - ae7 nc --- ae31 nc pin page 70 - - - ae33 saddin[5]# p i g ae35 sdataoutclk[0]# p o p ae37 sdata[9]# p b g af2 vss --- af4 vss --- af6 nc pin page 70 - - - af8 nc pin page 70 - - - af10 nc pin page 70 - - - af12vss --- af14 vcc_core - - - af16vss --- af18 vcc_core - - - af20vss --- af22 vcc_core - - - af24vss --- af26 vcc_core - - - af28 nc pin page 70 - - - af30 nc pin page 70 - - - af32 nc pin page 70 - - - af34 vcc_core - - - af36 vcc_core - - - ag1 ferr page 67 p o - ag3 reset# - i - ag5 nc pin page 70 - - - ag7 key pin page 69 - - - ag9 key pin page 69 - - - ag11 corefb page 67 - - - ag13 corefb# page 67 - - - ag15 key pin page 69 - - - ag17 key pin page 69 - - - ag19 nc pin page 70 - - - table 20. cross-reference by pin location pin name description l p r ag21 nc pin page 70 - - - ag23 nc pin page 70 - - - ag25 nc pin page 70 - - - ag27 key pin page 69 - - - ag29 key pin page 69 - - - ag31 nc pin page 70 - - - ag33 saddin[2]# p i g ag35 saddin[11]# p i g ag37 saddin[7]# p i p ah2vcc_core --- ah4vcc_core --- ah6 amd pin page 66 - - - ah8 nc pin page 70 - - - ah10 vcc_core - - - ah12vss --- ah14 vcc_core - - - ah16vss --- ah18 vcc_core - - - ah20vss --- ah22 vcc_core - - - ah24vss --- ah26 vcc_core - - - ah28vss --- ah30 nc pin page 70 - - - ah32vss --- ah34vss --- ah36vss --- aj1 ignne# page 69 p i - aj3 init# page 69 p i - aj5 vcc_core --- aj7 nc pin page 70 - - - aj9 nc pin page 70 - - - aj11 nc pin page 70 - - - aj13 analog page 66 - - - table 20. cross-reference by pin location pin name description l p r (continued)
64 pin descriptions chapter 10 amd ATHLON? mp processor model 6 opga data sheet for multiprocessor platforms 25480d?june 2002 preliminary information aj15 nc pin page 70 - - - aj17 nc pin page 70 - - - aj19 nc pin page 70 - - - aj21 clkfwdrst page 66 p i p aj23 vcca page 71 - - - aj25 pllbypass# page 70 p i - aj27 nc pin page 70 - - - aj29 saddin[0]# page 70 p i - aj31 sfillvalid# p i g aj33 saddinclk# p i g aj35 saddin[6]# p i p aj37 saddin[3]# p i g ak2 vss - - - ak4 vss - - - ak6 cpu_presence# page 67 - - - ak8 nc pin page 70 - - - ak10 vcc_core - - - ak12 vss - - - ak14 vcc_core - - - ak16 vss - - - ak18 vcc_core - - - ak20 vss - - - ak22 vcc_core - - - ak24 vss - - - ak26 vcc_core - - - ak28 vss - - - ak30 vcc_core - - - ak32 vss - - - ak34 vcc_core - - - ak36 vcc_core - - - al1 intr page 69 p i - al3 flush# page 69 p i - al5 vcc_core --- al7 nc pin page 70 - - - table 20. cross-reference by pin location pin name description l p r al9 nc pin page 70 - - - al11 nc pin page 70 - - - al13 pllmon2 page 70 o o - al15 pllbypassclk# page 70 p i - al17 clkin# page 66 p i p al19 rstclk# page 66 p i p al21 k7clkout page 69 p o - al23 connect page 67 p i p al25 nc pin page 70 - - - al27 nc pin page 70 - - - al29 saddin[1]# page 70 p i - al31 sdataoutvalid# p o p al33 saddin[8]# p i p al35 saddin[4]# p i g al37 saddin[10]# p i g am2vcc_core --- am4vss --- am6vss --- am8 nc pin page 70 - - - am10 vcc_core - - - am12vss --- am14 vcc_core - - - am16vss --- am18 vcc_core - - - am20vss --- am22 vcc_core - - - am24vss --- am26 vcc_core - - - am28vss --- am30 vcc_core - - - am32vss --- am34 vcc_core - - - am36vss --- an1 no pin page 70 - - - table 20. cross-reference by pin location pin name description l p r (continued)
chapter 10 pin descriptions 65 25480d?june 2002 amd ATHLON? mp processor model 6 opga data sheet for multiprocessor platforms preliminary information an3 nmi p i - an5 smi# p i - an7 nc pin page 70 - - - an9 nc pin page 70 - - - an11 nc pin page 70 - - - an13 pllmon1 page 70 o b - an15 pllbypassclk page 70 p i - an17 clkin page 66 p i p an19 rstclk page 66 p i p an21 k7clkout# page 69 p o - an23 procrdy p o p an25 nc pin page 70 - - - an27 nc pin page 70 - - - an29 saddin[12]# p i g an31 saddin[14]# p i g an33 sdatainvalid# p i p an35 saddin[13]# p i g an37 saddin[9]# p i g table 20. cross-reference by pin location pin name description l p r (continued)
66 pin descriptions chapter 10 amd ATHLON? mp processor model 6 opga data sheet for multiprocessor platforms 25480d?june 2002 preliminary information 10.3 detailed pin descriptions the information in this section pertains to table 20 on page 58. a20m# pin a20m# is an input from the syst em used to simulate address wrap-around in the 20-bit 8086. amd pin amd socket a processors do not implement a pin at location ah6. all socket a designs must have a top plate or cover that blocks this pin location. when the cover plate blocks this location, a non-amd part (e.g., pga370) does not fit into the socket. however, socket manufacturers are allowed to have a contact loaded in the ah6 posi tion. therefore, motherboard socket design should account for the possibility that a contact could be loaded in this position. amd ATHLON? system bus pins see the amd ATHLON? system bus specification , order# 21902 for information about the system bus pins?procrdy, pwrok, reset#, saddin[14:2]#, saddinclk#, saddout[14:2]#, saddoutclk#, scheck[7:0]#,sdata[63:0]#, sdatainclk[3:0]#, sdatainvalid#, sdataoutclk[3:0]#, sdataoutvalid#, sfillvalid#. analog pin treat this pin as a nc. apic pins, picclk, picd[1:0]# the advanced programmable interrupt controller (apic) is a feature that provides a flexible and expandable means of delivering interrupts in a system using an amd processor. the pins, picd[1:0], are the bi-directional message-passing signals used for the apic and are dr iven to the southbridge, a dedicated i/o apic, or another multiprocessing-enabled amd ATHLON mp processor model 6. the pin, picclk, must be driven with a valid clock input. for more information, see table 16, ?apic pin ac and dc characteristics,? on page 39. clkfwdrst pin clkfwdrst resets clock-forward circuitry for both the system and processor. clkin, rstclk (sysclk) pins connect clkin with rstclk and name it sysclk. connect clkin# with rstclk# and name it sysclk#. length match the clocks from the clock gener ator to the northbridge and processor. see ?sysclk and sysclk#? on pa ge 71 for more information.
chapter 10 pin descriptions 67 25480d?june 2002 amd ATHLON? mp processor model 6 opga data sheet for multiprocessor platforms preliminary information connect pin connect is an input from the system used for power management and clock-forwar d initialization at reset. corefb and corefb# pins corefb and corefb# are outputs to the system that provide processor core voltage feedback to the system. cpu_presence# pin cpu_presence# is connected to vss on the processor package. if pulled-up on the motherboard, cpu_presence# may be used to detect the presence or absence of a processor in the socket a-style socket. dbrdy and dbreq# pins dbrdy and dbreq# are routed to the debug connector. dbreq# is tied to vcc_c ore with a pullup resistor. ferr pin ferr is an output to the syst em that is asserted for any unmasked numerical exception i ndependent of the ne bit in cr0. ferr is a push-pull active high signal that must be inverted and level shifted to an active low signal. for more information about ferr and ferr#, see the ?required circuits? chapter of the amd ATHLON? processor-based motherboard design guide , order# 24363.
68 pin descriptions chapter 10 amd ATHLON? mp processor model 6 opga data sheet for multiprocessor platforms 25480d?june 2002 preliminary information fid[3:0] pins fid[3] (y3), fid[2] (y1), fid[1] (w3), and fid[0] (w1) are the 4-bit processor clock-to-sysclk ratio. table 21 on page 68 describes the encodings of the clock multi- pliers on fid[3:0]. the fid[3:0] signals are open-drain processor outputs that are pulled high on the motherboard and sampled by the chipset to determine the sip (serialization initialization packet) that is sent to the processor. the fid[3:0] signals are valid after pwrok is asserted. the fid[3:0]signals must not be sampled until they become valid. see the amd ATHLON? system bus specification , order# 21902 for more information about serialization initialization packets and sip protocol. table 21. fid[3:0] clock multiplier encodings fid[3:0] 2 processor clock to sysclk frequency ratio 0000 11 0001 11.5 0010 12 0011 12.5 1 0100 5 0101 5.5 0110 6 0111 6.5 1000 7 1001 7.5 1010 8 1011 8.5 1100 9 1101 9.5 1110 10 1111 10.5 notes: 1. all ratios greater than or equal to 12.5x have the same fid[3:0] code of 0011b, which causes the sip configuration for all ratios of 12.5x or greater to be the same. 2. bios initializes the clk_ctl msr during the post routine. this clk_ctl setting is used with all fid combinations and selects a halt disconnect divisor and a stop grant disconnect divisor. for more information, refer to the amd ATHLON? and amd duron? processors bios, software, and debug developers guide , order# 21656.
chapter 10 pin descriptions 69 25480d?june 2002 amd ATHLON? mp processor model 6 opga data sheet for multiprocessor platforms preliminary information the processor fid[3:0] outputs are open-drain and 2.5 v tolerant. to prevent damage to the processor, if these signals are pulled high to above 2.5 v, they must be electrically isolated from the processor. for information about the fid[3:0] isolation circuit, see the amd ATHLON? processor-based motherboard design guide , order# 24363. see ?frequency identification (fid[3:0])? on page 25 for the dc characteristics for fid[3:0]. flush# pin flush# must be tied to vcc_core with a pullup resistor. if a debug connector is implemente d, flush# is routed to the debug connector. ignne# pin ignne# is an input fr om the system that tells the processor to ignore numeric errors. init# pin init# is an input from the sy stem that resets the integer registers without affecting the fl oating-point registers or the internal caches. execution starts at 0_ffff_fff0h. intr pin intr is an input from the system that causes the processor to start an interrupt acknowledge transaction that fetches the 8-bit interrupt vector and starts execution at that location. jtag pins tck, tms, tdi, trst#, and tdo are the jtag interface. connect these pins directly to the motherboard debug connector. pull tdi, tck, tms, and trst# up to vcc_core with pullup resistors. k7clkout and k7clkout# pins k7clkout and k7clkout# are each run for two to three inches and then terminated with a resistor pair: 100 ohms to vcc_core and 100 ohms to vss. the effective termination resistance and voltage are 50 ohms and vcc_core/2. key pins these 16 locations are for processor type keying for forwards and backwards compatibility (g7, g9, g15, g17, g23, g25, n7, q7, y7, aa7, ag7, ag9, ag15, ag17, ag27, and ag29). motherboard designers should treat key pins like nc (no connect) pins. a socket designer has the option of creating a top mold piece that allows pga key pins only where designated. however, sockets that populate a ll 16 key pins must be allowed, so the motherboard must always provide for pins at all key pin locations.
70 pin descriptions chapter 10 amd ATHLON? mp processor model 6 opga data sheet for multiprocessor platforms 25480d?june 2002 preliminary information nc pins the motherboard should provide a plated hole for an nc pin. the pin hole should not be elec trically connected to anything. nmi pin nmi is an input from the syst em that causes a non-maskable interrupt. pga orientation pins no pin is present at pin loca tions a1 and an1. motherboard designers should not allow for a pga socket pin at these locations. for more information, see the amd ATHLON? processor-based motherboard design guide , order# 24363. pll bypass and test pins plltest#, pllbypass#, pllmon1, pllmon2, pllbypassclk, and pllbypassclk# are the pll bypass and test interface. this interf ace is tied disabled on the motherboard. all six pin signals are routed to the debug connector. all four processor inputs (plltest#, pllbypass#, pllmon1, and pllmon2) are tied to vcc_core with pullup resistors. pwrok pin the pwrok input to the processor must not be asserted until all voltage planes in the system are within specification and all system clocks are running within specification. for more information, see ?signal and power-up requirements? on page 41. saddin[1:0]# and saddout[1:0]# pins the amd ATHLON mp processor model 6 does not support saddin[1:0]# or saddout[1:0]#. saddin[1]# is tied to vcc with pullup resistors, if this bit is not supported by the northbridge (future models can support saddin[1]#). saddout[1:0]# are tied to vcc with pullup resistors if these pins are supported by the northbridge. for more information, see the amd ATHLON? system bus specification , order# 21902. scan pins scanshiften, scanclk1, scaninteval, and scanclk2 are the scan interface. this in terface is amd internal and is tied disabled with pulldown resistors to ground on the motherboard. scheck[7:0]# pins for systems that do not support ecc, the scheck[7:0]# pins should be treated as nc pins.
chapter 10 pin descriptions 71 25480d?june 2002 amd ATHLON? mp processor model 6 opga data sheet for multiprocessor platforms preliminary information smi# pin smi# is an input that causes the processor to enter the system management mode. stpclk# pin stpclk# is an input that causes the processor to enter a lower power mode and issue a stop grant special cycle. sysclk and sysclk# sysclk and sysclk# are differential input clock signals provided to the pll of the processor from a system-clock generator. see ?clkin, rstclk (sysclk) pins? on page 66 for more information. thermda and thermdc pins thermal diode anode and cathode pins are used to monitor the actual temperature of the processor die, providing more accurate temperature control to the system. vcca pin vcca is the processor pll supply. for information about the vcca pin, see ?vcca ac and dc characteristics? on page 25 and the amd ATHLON? processor-ba sed motherboard design guide , order# 24363. vid[4:0] pins the vid[4:0] (voltage identifi cation) outputs are used to dictate the vcc_core voltage level. the vid[4:0] pins are strapped to ground or left unc onnected on the processor package. the vid[4:0] pins are pulled-up on the motherboard and used by the vcc_core dc/dc converter.
72 pin descriptions chapter 10 amd ATHLON? mp processor model 6 opga data sheet for multiprocessor platforms 25480d?june 2002 preliminary information table 22 shows the vid[4:0] code and voltage definition. vrefsys pin vrefsys (w5) drives the threshold voltage for the system bus input receivers. the value of vrefsys is system specific. in addition, to minimize vcc_core noise rejection from vrefsys, include decoupling capacitors. for more information, see the amd ATHLON? processor-based motherboard design guide , order# 24363. zn and zp pins zn (ac5) and zp (ae5) are the push-pull compensation circuit pins. in push-pull mode (sel ected by the sip parameter syspushpull asserted), zn is ti ed to vcc_core with a resistor that has a resistance matching the impedance z 0 of the transmission line. zp is tied to vss with a resistor that has a resistance matching the impedance z 0 of the transmission line. table 22. vid[4:0] code to voltage definition vid[4:0] vcc_core (v) vid[4:0] vcc_core (v) 00000 1.850 10000 1.450 00001 1.825 10001 1.425 00010 1.800 10010 1.400 00011 1.775 10011 1.375 00100 1.750 10100 1.350 00101 1.725 10101 1.325 00111 1.675 10111 1.275 01000 1.650 11000 1.250 01001 1.625 11001 1.225 01010 1.600 11010 1.200 01011 1.575 11011 1.175 01100 1.550 11100 1.150 01101 1.525 11101 1.125 01110 1.500 11110 1.100 01111 1.475 11111 no cpu
chapter 11 ordering information 73 25480d?june 2002 amd ATHLON? mp processor model 6 opga data sheet for multiprocessor platforms preliminary information 11 ordering information standard amd ATHLON? mp processor model 6 products amd standard products are available in s everal operating ranges. the ordering part numbers (opn) are formed by a combination of the elements, as shown in figure 15 . figure 15. opn example for the amd ATHLON? mp processor model 6, opga package a 2100 d m s 3 c note: spaces are added to the number shown above for viewing clarity only. opn max fsb: c = 266 mhz size of l2 cache: 3 = 256kbytes die temperature: s = 95oc operating voltage: m = 1.75v package type: d = opga model: 1500 operates at 1333 mhz, 1600 at 1400 mhz, 1800 at 1533 mhz, 1900 at 1600 mhz, 2000 at 1667 mhz, 2100 at 1733 m hz generation: mp = high-performance processor for multiprocessing systems family/architecture: a = amd ATHLON? processor architecture mp
74 ordering information chapter 11 amd ATHLON? mp processor model 6 opga data sheet for multiprocessor platforms 25480d?june 2002 preliminary information
25480d?june 2002 amd ATHLON? mp processor model 6 opga data sheet for multiprocessor platforms preliminary information appendix a 75 appendix a conventions and abbreviations this section contains information about the conventions and abbreviations used in this document. signals and bits active-low signals?signal names containing a pound sign, such as sfill#, indicate active-low signals. they are asserted in their low-voltage state and negated in their high-voltage state. when used in this context, high and low are written with an in itial upper ca se letter. signal ranges?in a range of signals, the highest and lowest signal numbers are contained in brackets and separated by a colon (for example, d[63:0]). reserved bits and signals? signals or bus bits marked reserved must be driven inactive or left unconnected, as indicated in the signal descri ptions. these bits and signals are reserved by amd for future implementations. when software reads registers with reserved bits, the reserved bits must be masked. when software writes such registers, it must first read the register and change only the non-reserved bits before writing back to the register. three-state?in timing diagrams, signal ranges that are high impedance are shown as a straight horizontal line half-way between the high and low levels.
76 appendix a amd ATHLON? mp processor model 6 opga data sheet for multiprocessor platforms 25480d?june 2002 preliminary information invalid and don?t-care?in timing diagrams, signal ranges that are invalid or don't-care are filled with a screen pattern. data terminology the following list defines data terminology: quantities  a word is two bytes (16 bits)  a doubleword is four bytes (32 bits)  a quadword is eight bytes (64 bits) addressing?memory is addressed as a series of bytes on eight-byte (64-bit) boundaries in which each byte can be separately enabled. abbreviations?the following notation is used for bits and bytes:  kilo (k, as in 4-kbyte page)  mega (m, as in 4 mbits/sec)  giga (g, as in 4 gbytes of memory space) see table 23 on page 77 for more abbreviations. little-endian convention?the byte with the address xx...xx00 is in the least-significant byte position (little end). in byte diagrams, bit positions are numbered from right to left?the little end is on the right and the big end is on the left. data structure diagrams in memory show low addresses at the bottom and high addresses at the top. when data items are aligned, bit notation on a 64-bit data bus maps directly to bit notation in 64-bit-wide memory. because byte addresses increase from right to left, strings appear in reverse order when illustrated. bit ranges?in text, bit ranges are shown with a dash (for example, bits 9?1). when accompanied by a signal or bus name, the highest and lowest bit numbers are contained in brackets and separated by a co lon (for example, ad[31:0]). bit values?bits can either be set to 1 or cleared to 0. hexadecimal and binary numbers?unless the context makes interpretation clear, hexadecimal numbers are followed by an h and binary numbers are followed by a b.
appendix a 77 25480d?june 2002 amd ATHLON? mp processor model 6 opga data sheet for multiprocessor platforms preliminary information abbreviations and acronyms table 23 contains the definitions of abbreviations used in this document. table 23. abbreviations abbreviation meaning aampere f farad g giga- gbit gigabit gbyte gigabyte ghz gigahertz hhenry h hexadecimal k kilo- kbyte kilobyte lbf foot-pound m mega- mbit megabit mbyte megabyte mhz megahertz m milli- ms millisecond mw milliwatt micro- a microampere f microfarad h microhenry s microsecond v microvolt n nano- na nanoampere nf nanofarad nh nanohenry ns nanosecond ohm ohm
78 appendix a amd ATHLON? mp processor model 6 opga data sheet for multiprocessor platforms 25480d?june 2002 preliminary information table 24 contains the definitions of acronyms used in this document. ppico- pa picoampere pf picofarad ph picohenry ps picosecond s second vvolt wwatt table 24. acronyms abbreviation meaning acpi advanced configuration and power interface agp accelerated graphics port apci agp peripheral component interconnect api application programming interface apic advanced programmable interrupt controller ate automated test equipment bios basic input/output system bist built-in self-test biu bus interface unit cad computer-aided design cpga ceramic pin grid array dcc digital content creation ddr double-data rate dimm dual inline memory module dma direct memory access dram direct random access memory dsp digital signal processing ecc error correction code eda electronic design automation eide enhanced integrated device electronics table 23. abbreviations (continued) abbreviation meaning
appendix a 79 25480d?june 2002 amd ATHLON? mp processor model 6 opga data sheet for multiprocessor platforms preliminary information eisa extended industry standard architecture eprom enhanced programmable read only memory fifo first in, first out gart graphics address remapping table hstl high-speed transistor logic ide integrated device electronics isa industry standard architecture jedec joint electron device engineering council jtag joint test action group lan large area network lru least-recently used lvttl low voltage transistor transistor logic moesi modified owner exclusive shared invalid msb most significant bit mtrr memory type and range registers mux multiplexer nmi non-maskable interrupt od open-drain opga organic pin grid array pa physical address pbga plastic ball grid array pci peripheral component interconnect pde page directory entry pdt page directory table pga pin grid array pll phase locked loop pmsm power management state machine pos power-on suspend post power-on self-test ram random access memory rom read only memory rxa read acknowledge queue scsi small computer system interface sdi system dram interface table 24. acronyms (continued) abbreviation meaning
80 appendix a amd ATHLON? mp processor model 6 opga data sheet for multiprocessor platforms 25480d?june 2002 preliminary information sdram synchronous direct random access memory simd single instruction multiple data sip serial initialization packet smbus system management bus spd serial presence detect sram synchronous random access memory srom serial read only memory tlb translation lookaside buffer tom top of memory ttl transistor transistor logic vas virtual address space vpa virtual page address vga video graphics adapter usb universal serial bus zdb zero delay buffer table 24. acronyms (continued) abbreviation meaning


▲Up To Search▲   

 
Price & Availability of ATHLON

All Rights Reserved © IC-ON-LINE 2003 - 2022  

[Add Bookmark] [Contact Us] [Link exchange] [Privacy policy]
Mirror Sites :  [www.datasheet.hk]   [www.maxim4u.com]  [www.ic-on-line.cn] [www.ic-on-line.com] [www.ic-on-line.net] [www.alldatasheet.com.cn] [www.gdcy.com]  [www.gdcy.net]


 . . . . .
  We use cookies to deliver the best possible web experience and assist with our advertising efforts. By continuing to use this site, you consent to the use of cookies. For more information on cookies, please take a look at our Privacy Policy. X